Skip to main content

The Master Algorithm - Pedro Domingos ***

I am really struggling to remember a book that has irritated me as much as this one, which is a shame because it's on a very interesting and significant subject. Pedro Domingos takes us into the world of computer programs that solve problems through learning, exploring everything from back propagating neural networks to Bayesian algorithms, looking for the direction in which we might spot the computing equivalent of the theory of everything, the master algorithm that can do pretty much anything that can be done with a computer (Turing proved a long time ago that there will always be some things that can't). As the subtitle puts it, this is the quest for the ultimate learning machine that will remake our world.

So far, so good. Not only an interesting subject but one I have a personal interest in as I had some involvement in artificial intelligence many moons ago. But just reading the prologue put my hackles up. It was one of those descriptions of how a technology influences every moment of your life, as the author takes us through a typical day. Except 90% of his examples have only ever been experienced by a Silicon Valley geek, and those that the rest of us have come across, like algorithms to make recommendations to you on shopping websites and video streaming sites, in my experience, are always so terrible that they are almost funny.

The pain carries on in part because of a kind of messianic fervour for the topic that means that the author seems convinced it is about to totally takeover the world - and like most fanatics, he presents this view while viciously attacking everyone who disagrees, from the likes of Marvin Minsky and Noam Chomsky to Black Swan author Nassim Nicholas Taleb. It's interesting that Domingos is totally dismissive of the early knowledge engineers who thought their methodology would take over the world, but can't see that his own pursuit of the 'master algorithm' (think of Lord of the Rings, but substitute 'algorithm' for 'ring') is equally likely to be a pursuit that is much easier to theorise about than to bring to success.

To make matters worse, Domingos repeatedly claims, for instance, that thanks to learning algorithms it's possible to predict the movement of the stock market, or to predict the kind of 'black swan' events that Taleb shows so convincingly are unpredictable. Yet I have never seen any evidence that this is true, it seems to go totally against what we know from chaos theory, and Domingos doesn't present any evidence, he just states it as fact. (Could you really have predicted the existence of black swans before they were discovered? How about blue ones?)

One other problem I have with the book is that the author isn't very good at explaining the complexities he is dealing with. I've seen many explanations of Bayesian statistics over the years, for instance, and this was one of the most impenetrable I've ever seen.

I can't tell you to avoid this book, because I've not come across another that introduces the whole range of machine learning options in the way that Domingos does. But any recommendation has to be made through gritted teeth because I did not like the way that information was put across.


Hardback 

Kindle 

Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…