Skip to main content

Eureka: How Invention Happens - Gavin Weightman ***




Updated for paperback version
There's an interesting point made by Gavin Weightman in Eureka - the way that many inventions were the brainchild of an amateur, a tinkerer, who managed to get the invention going pretty badly, before it was then picked up elsewhere, typically by a larger organization which carried it forward to become a commercial or practical product. It's certainly true of the five examples he focusses on in the book.

These are powered flight, television, the barcode, the PC and the mobile phone (cellphone). In each case, Weightman gives us a long section in which he introduces that individual (or small team) of amateurs, plunges back into their historical antecedents - because invention doesn't come from nowhere, there is plenty of groundwork that precedes it - and then takes us through the detailed work of the amateurs and the way that the invention was then taken up and commercialised.

For me, the two best sections were the ones on TV and the barcode, in part because I'd read more detailed books on the other topics. The TV section is interesting because it gives the best balance between Baird and Farnsworth I've seen. In my youth (in the UK) John Logie Baird was the only name you ever heard when it came to inventing the television, while more recently the magnificently named Philo T. Farnsworth has taken centre stage (because unlike Baird, his TV concept was not a dead-end mechanical approach), but Weightman puts both in their rightful positions. 

The barcode section was particularly interesting because it's something I've never read about, and it's easy to overlook the barcode as an invention, even though it plays a major role every time we go shopping, not to mention its importance in inventory and stock control. It was fascinating to learn that it was inspired by Morse code. My only real criticism of this chapter is the way that it concentrates solely on the hardware, where the development of the software was equally crucial in the story.

These are, without doubt, interesting stories, but the reason I haven't given the book a higher star rating is that it's not a great read. The historical sections get rather dull and over-detailed (this is particularly the case in the flight section, not helped by jumping around wildly chronologically in a way that really doesn't help the reader). I also think that the central thesis that inventions come from isolated amateurs, which the author presents as if it's a new observation, would have been better if he had read more around the study of creativity and innovation. It's an observation dating back for decades that in the creative field ideas come from individuals, while development tends to come from teams, which is why in part there was a strong historical tendency for the more individual-oriented UK of the early to mid 20th Century to come up with inventions, while the US, where businesses tended to have a stronger team approach, was better at developing those inventions to finished products.

The other problem with the thesis is selectivity. It's certainly true that these inventions were the work of amateurs, but it's not true of, say, the laser and a whole host of modern inventions where the technology level is often too high for amateurs to get anywhere in a garage lab. An interesting set of stories, then, but could have been told better and the central thesis could do with some expansion and extra sophistication. 

Paperback:  

Kindle:  

Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...