Skip to main content

At the Edge of Uncertainty – Michael Brooks ****

One of my favourite popular science books is Marcus Chown’s The Universe Next Door, where he explores scientific theories just the other side of the dividing line between sanityand madness. Here Michael Brooks, who started his ‘amazing things in science’ run with the excellent 13 Things That Don’t Make Sense, now gives us ’11 discoveries taking science by surprise’ – science that can still shock us, but is just on the sane side of the dividing line.
The topics range from consciousness and chimeras to hyper computers (which go beyond the limits of Turing’s Universal Computer) and time. Where the chapters work, they work very well. I thought the chapter on the big bang and inflation, where Brooks pulls apart the fragile, held-together-by-duct-tape nature of the current theory with surgical precision was brilliant, starting from a little pen portrait of Alan Guth and then showing both how the current picture is strung together and also how various discoveries have chipped away at the solidity of the current picture. (Sadly the book was written too soon to include the BICEP2 collapse.) On the whole, the physics-based chapters worked better than the biology chapters, which seemed a little more staid and less exciting, though there was a lot to find interesting in the chimeras chapter and all had plenty of joyful nuggets of discovery.
What I was less certain about was the delivery. The cover quote says ‘He writes, above all, with attitude.’ This is true, but that attitude sometimes got in the way of accuracy, making the approach inconsistent. In the big bang chapter Brooks makes it clear that things are anything but certain, as is the nature of science. Yet it most other chapters he makes plonking statements of fact about theories that are anything but solid, where that same scepticism and honesty would have been more appropriate. So, for instance, when describing the holographic universe theory, he says ‘It turns out the table – and everything else around you – is a hologram.’ Well, no, it doesn’t. There is a theory that the information that makes up the universe could be represented in one less dimension, i.e. as a hologram. But that doesn’t make it true, and it certainly doesn’t make a table a hologram.
Later on, he tells us that time doesn’t exist, again as if this were gospel. Yet what he’s talking about is an approach that isn’t universally held among physicists, and even when it is, doesn’t mean what it sounds like. When physicists say this, they mean that it may be possible to formulate most of the key equations of physics without incorporating time. But that’s not the same as ‘time doesn’t exist’ in any normal sense. Those equations don’t incorporate Mount Everest either, but that doesn’t mean the mountain doesn’t exist.
One last concern is that in the drive to be dramatic, accuracy can be lost. Early on, he perpetuates the ‘humans are nothing special’ myth,  pointing out how other animals share some of our traits. But this misses the point – it’s one thing for a bower bird to build an attractive bower, or rats to display personality. I won’t be convinced humans aren’t special until another species starts writing books, sending people to the moon and curing a wide range of diseases. Of course humans are special. Later, scientific fact is distorted to make a dramatic point. We are told ‘The atoms in your body were forged in the explosions of supernovae many hundreds of millions of years after the Big Bang. That makes them cosmic youngsters compared to the lithium atoms so vital to your mobile phone battery. Those atoms were created in the first three minutes of the universe’s life. There is something extraordinary about holding something so old in your hand.’ Y-e-e-s, only the most common atom in your body is hydrogen, which was created at the same time as the lithium (and much of the rest didn’t come out of supernovae, which are only required for atoms with a mass above iron).
One other howler. In the (fascinating) hypercomputing section, Brooks describes non-Euclidian geometries. He says ‘You almost certainly didn’t learn about these at school. That’s partly because they can’t be made physical in our three-dimensional universe…’ Dr Brooks clearly never worked for an airline, as they have to deal with non-Euclidian geometry all the time. Euclidean geometry makes statements like ‘parallel lines never meet’. Try drawing two parallel lines, starting from different points on the equator and heading north. You will find they meet at the pole. Similarly, in Euclidian geometry, the angles of a triangle add up to 180 degrees. Draw a triangle on the surface of the earth and the angles add up to more than 180 degrees. Non-Euclidian geometry is very physical in our three dimensional universe.
So there are a few issues, but I don’t want to put you off because it really is an excellent read and covers some fascinating areas of science. Just don’t take those statements of ‘fact’ at face value and buckle in for a wonderful ride.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

On the Fringe - Michael Gordin *****

This little book is a pleasant surprise. That word 'little', by the way, is not intended as an insult, but a compliment. Kudos to OUP for realising that a book doesn't have to be three inches thick to be interesting. It's just 101 pages before you get to the notes - and that's plenty. The topic is fringe science or pseudoscience: it could be heavy going in a condensed form, but in fact Michael Gordin keeps the tone light and readable. In some ways, the most interesting bit is when Gordin plunges into just what pseudoscience actually is. As he points out, there are elements of subjectivity to this. For example, some would say that string theory is pseudoscience, even though many real scientists have dedicated their careers to it. Gordin also points out that, outside of denial (more on this a moment), many supporters of what most of us label pseudoscience do use the scientific method and see themselves as doing actual science. Gordin breaks pseudoscience down into a n

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under