Skip to main content

The Particle at the End of the Universe – Sean Carroll ****

The possible discovery of the Higgs boson has prompted a flurry of books – in part because it’s significant (and because the Large Hadron Collider is a sexy bit of kit) and in part because the whole business of the Higgs field and its importance for the mass of particles is one of the most obscure and unlikely bits of physics in the current canon.
I have really mixed feelings about this entry in the genre from physicist Sean Carroll. It’s not because his book is too difficult to understand – it’s almost because it’s too easy. Generally speaking, there are three levels of good popular science. There’s TV news popular science, which cuts a lot of corners to make things totally simplistic, but manages to get the message across quickly. There’s the kind of book a good popular science writer will produce – highly approachable and readable, giving a lot more depth than the TV news and the best way to actually get an understanding of what’s going on for most of us, but still cutting some scientific corners. And there’s the kind of book a good scientist will write, which will probably go over your head the first time you read it, but if you persevere will give you the best illusion of knowing what the real science is about and getting some feel for the world of the scientist.
In his previous book From Eternity to Here, like Cox & Forshaw’s Why Does E=mc2, Carroll didn’t pull the punches. Much of the text was readable, but it may well have taken several attempts to get it to sink in. It was the perfect popular science book by an academic. Parts of this one, unfortunately verge on TV science. Some of it is so fluffy and approachable that it almost disappears into meaninglessness.
Luckily, this isn’t true of all the book. The early parts are worse. Oddly, he gets significantly better when talking about the building of the Large Hadron Collider than he does in his first attempts on the physics. And it is worth persevering as Carroll improves with his approach further in (best of all are a few appendices where he goes into more detail and we see the old, mind-bending Carroll emerging).
Some specific issues I had: it was really irritating that Carroll uses units like degrees Fahrenheit and miles rather than scientific (or European) units throughout. This is real poor TV science stuff. A lot of his science is what I’d call ‘plonking’ he states it as if it is absolute truth, not the current best theory. So, for instance, he speaks of dark matter as if it were certain fact (nary a mention of the rival MOND theory). And he says at one point ‘The world is really made out of fields. Sometimes the stuff of the universe looks like particles… but deep down it’s really fields.’
I have two problems with this. One is that one of my absolute heroes was Richard Feynman and he said of light ‘I want to emphasize that light does come in this form – particles.’ If particles are good enough for Feynman, they’re good enough for me. Secondly I think that what Carroll should be saying is ‘fields are the model that work best to describe what’s out there.’ In the end it’s a human devised model of something we can only inspect extremely indirectly. It is almost bound to be wrong – it’s just better than anything else we have at doing the job. (Yet.)
Perhaps the worst problem is the way he oversimplifies. Oddly this is a classic problem when a scientist is writing popular science (and why a good science writer is usually better) because he doesn’t know what the lay reader finds puzzling, so doesn’t bother to explain. His explanation of the application of symmetry to physics simply doesn’t fill in enough of the gaps. He says, for instance, that a mentos and diet coke experiment is symmetrical in all sorts of ways – you can point it in any direction, or translate it to any position and it works the same. Clearly this isn’t true. It wouldn’t work the same if the bottle was upside down, pointing straight at the ground, nor would it be the same if you translated it under the sea or into space. It’s a classic case of handwaving generalisation, missing out all the provisos and so making the explanation fail.
It’s certainly not a bad book – but I did prefer its rivals on a couple of counts. For a better heavy duty attempt at the physics, Frank Close’s The Infinity Puzzle wins (though that definitely is a ‘several reads to get it’ book). And for the best overall description of the search for the Higgs, combined with the most approachable but informative information on the Higgs field and the whole standard model of particle physics I’d recommend Higgs by Jim Baggott. But Sean Carroll’s book still did have a lot going for it and is still well worth considering.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...