Skip to main content

Energy: the subtle concept – Jennifer Coopersmith ****

There are many reasons why, by rights, this shouldn’t be a great popular science title. Physicist Jennifer Coopersmith makes clear at the very beginning that a background in the physical sciences is assumed for parts of the book. We have quite a few equations, and throughout the book Coopersmith does not hesitate to mention such words as tensors, integrals and vectors, with little in the way of definitions for the layperson. In addition, there is a lot packed in here – at 360 pages, whilst there are certainly longer books out there, I wondered when starting the book whether the non-specialist might suffer from information overload.
And yet, the more I read this book, the more difficult it was to put it down, and I was always excited about returning to it. (To give some indication of how much I enjoyed the book: I am often unable to get down to reading until 8 or 9 o’clock at night during the week, because of a long commute. For this book, however, I got up especially early on one occasion to continue reading so I didn’t have to wait until the evening.) This is because, despite all the shortcomings mentioned above, the book also has a fascinating story to tell about the development of our understanding of energy as a physical quantity, and overall, the way Coopersmith describes this development means that these shortcomings, while never going away, become less significant.
We begin with Liebniz’s concept in the 17th century of vis viva, or ‘live force’, defined as some kind of ‘activity’ that was conserved and which was ‘the cause of all effect in the universe.’ After tracing developments in the 18th and 19th centuries, we go on to consider our modern understanding of kinetic and potential energy, via discussions of quantum mechanics (where we find that, contrary to what we had believed, the principle of conservation of energy can be violated due to the uncertainty principle) and relativity (a consequence of which is that we understand energy as being interchangeable with mass). Along the way, we meet a varied cast of characters who have contributed to our understanding of energy, and the biographical sections we get on the scientists involved complements well the explanations of the science, and makes the book, on the whole, very readable. Particularly interesting is the section on Sadi Carnot.
It is also the case that, whilst the science can often be challenging, if you put in the effort you will be more than compensated for your trouble, and it is possible to get real insights into the nature of energy, which, unlike less abstract physical quantities like mass or momentum, can be difficult to get a feel for. Yes, there are equations, and yes, there are tricky concepts which could have been introduced more gently. But if you persevere, and continue reading where you may otherwise be liable to get a little stuck, it is worth it, and you always get, at the very least, a good idea of the big picture.
I can’t completely overlook the drawbacks mentioned above, so am unable to give the book the full five stars. But I would still highly recommend this. Although perhaps ideal for physics undergraduates, this book is still of great value for the layperson, who would be likely to get a lot out of it.
Hardback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Matt Chorley

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re