Skip to main content

Energy: the subtle concept – Jennifer Coopersmith ****

There are many reasons why, by rights, this shouldn’t be a great popular science title. Physicist Jennifer Coopersmith makes clear at the very beginning that a background in the physical sciences is assumed for parts of the book. We have quite a few equations, and throughout the book Coopersmith does not hesitate to mention such words as tensors, integrals and vectors, with little in the way of definitions for the layperson. In addition, there is a lot packed in here – at 360 pages, whilst there are certainly longer books out there, I wondered when starting the book whether the non-specialist might suffer from information overload.
And yet, the more I read this book, the more difficult it was to put it down, and I was always excited about returning to it. (To give some indication of how much I enjoyed the book: I am often unable to get down to reading until 8 or 9 o’clock at night during the week, because of a long commute. For this book, however, I got up especially early on one occasion to continue reading so I didn’t have to wait until the evening.) This is because, despite all the shortcomings mentioned above, the book also has a fascinating story to tell about the development of our understanding of energy as a physical quantity, and overall, the way Coopersmith describes this development means that these shortcomings, while never going away, become less significant.
We begin with Liebniz’s concept in the 17th century of vis viva, or ‘live force’, defined as some kind of ‘activity’ that was conserved and which was ‘the cause of all effect in the universe.’ After tracing developments in the 18th and 19th centuries, we go on to consider our modern understanding of kinetic and potential energy, via discussions of quantum mechanics (where we find that, contrary to what we had believed, the principle of conservation of energy can be violated due to the uncertainty principle) and relativity (a consequence of which is that we understand energy as being interchangeable with mass). Along the way, we meet a varied cast of characters who have contributed to our understanding of energy, and the biographical sections we get on the scientists involved complements well the explanations of the science, and makes the book, on the whole, very readable. Particularly interesting is the section on Sadi Carnot.
It is also the case that, whilst the science can often be challenging, if you put in the effort you will be more than compensated for your trouble, and it is possible to get real insights into the nature of energy, which, unlike less abstract physical quantities like mass or momentum, can be difficult to get a feel for. Yes, there are equations, and yes, there are tricky concepts which could have been introduced more gently. But if you persevere, and continue reading where you may otherwise be liable to get a little stuck, it is worth it, and you always get, at the very least, a good idea of the big picture.
I can’t completely overlook the drawbacks mentioned above, so am unable to give the book the full five stars. But I would still highly recommend this. Although perhaps ideal for physics undergraduates, this book is still of great value for the layperson, who would be likely to get a lot out of it.
Hardback:  

Kindle:  
Review by Matt Chorley

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Artificial Intelligence - Yorick Wilks ****

Artificial intelligence is one of those topics where it's very easy to spin off into speculation, whether it's about machine conciousness or AI taking over the world (and don't get me onto the relatively rare connection to robots - cover designer please note). All the experience of AI to date has been that it has been made feasible far slower than originally predicted, and that it faces dramatic limitations. So, for example, self-driving cars may be okay in limited circumstances, but are nowhere near ready for the commute home. Similarly, despite all the moves forward in AI technology, computers are so-so at recognising objects after learning from thousands of examples - sometimes fooled by apparently trivial surface patterning - where humans can recognise items from a handful of examples.

Even so, we can't deny that AI is having an influence on our lives and Yorick Wilks, emeritus professor of AI at the University of Sheffield, is ideally placed to give us a picture …

Apollo 11 - David Whitehouse *****

The problem with doing a book about the Apollo programme is that it's hard to find something that hasn't been said before - but with the 50th anniversary of the first moon landing just weeks away, the publication of this elegant book is extremely timely, and science-reporting veteran David Whitehouse manages to make the story feel fresh, even if you're one of the just 20 per cent of the world population who were alive on the remarkable day in 1969.

Although he has worked a lot with New Scientist, Whitehouse was for many years a TV journalist, and that comes through in his impressively engaging prose as he takes us back to the origins of the US/USSR space race that would lead to the moon landing. He passes through the wartime aspects relatively quickly, but once the two superpowers are flexing their space technology muscles, Whitehouse achieves a near perfect balance between the far less-heard USSR side of the story and the US. This is probably the best bit of the whole bo…