Skip to main content

In Search of the Multiverse – John Gribbin ****

There’s an old saying along the lines of ‘there’s speculation, then there’s more speculation, and then there’s cosmology.’ When it comes down to the likes of thebig bang, while there are alternative theories, it’s arguable that there’s a lot of evidence to make it likely. But what old statesman of science writing John Gribbin does here is launch off with a swallow dive into the deep end of the cosmology speculation pool.
To be fair, this isn’t how Gribbin seems to see it. He argues that some aspects of the multiverse – the idea that there isn’t a single universe but multiple versions of it, whether in a quantum ‘many worlds’ form or through multiple bubbles of inflation happening in a wider multiverse of which our entire universe is just one bubble – are almost inevitably true. This isn’t, in fairness, a view held by all physicists, but he makes a good stab at persuading us that this is the right line to follow.
What is beyond doubt is that Gribbin tells a fascinating story and beguiles us with the many possibilities for multiverses. Sometimes he raises an idea just to dash it. He doesn’t like the ‘bouncing branes’ idea, because he wants more richness than just a single repeating collision. And he finds the idea of virtual ‘Matrix style’ universe running on a higher intelligence’s computers too unlikely. But throughout Gribbin presents us with an entertaining and mind-stretching collection of ideas.
I’m not totally comfortable with everything in the book. Gribbin is too loose with his approach to infinity, employing the concept in a way that is mathematically dubious. He is also prone to make giant leaps of logic that may have an underlying detail we don’t see – but without that detail they are baffling. So, for instance, he says when referring to the first, small examples of a quantum computer in action he says ‘This proved that quantum computing works, proved that Shor’s algorithm works, and makes it very difficult to doubt the existence of the Multiverse.’ That last part is a huge leap that really isn’t obvious to the reader.
I was also a little concerned by Gribbin’s explanation of entropy. He describes a block of ice melting and says there is then less order – which means less information and less complexity. Yet without more explanation, the ‘less information’ bit doesn’t make a lot of sense. You need a lot less information to describe a regular block of ice, which you can describe at a molecular level using some simple formulae, than you do a fluid, where you would have to describe the position and state of every single molecule. It’s not that he’s wrong, but the example is confusing.
So we could have done with a little more clarity in places -and that’s why the book gets four stars rather than five – yet this remains an engaging voyage around the manifold possibilities for the multiverse that many will enjoy.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'