Skip to main content

Physics of the Impossible – Michio Kaku *****

One of the first books we ever reviewed on www.popularscience.co.uk was The Physics of Star Trek by Lawrence Krauss. There were to be many ‘Physics of…’ and ‘Science of…’ books to follow from different authors, and now Physics of Star Trek seems rather dated. But there’s no need to worry, as Michio Kaku’s Physics of the Impossible brings it all up to date and goes much further, pulling in pretty well every imagining from science fiction. So, yes, we have phasers and transporters, antimatter energy and warp drives… but we also delve into space elevators, time travel, robots, the Death Star and much more.
Kaku, a physics professor at the City University of New York and a popular science broadcaster, doesn’t explicitly set this as ideas from science fiction, though he uses many SF examples in the book. Instead he is looking at degrees of impossibility. Each of the improbable applications of science is classified at one of three levels. Class I impossibilities have no problems with today’s science but present significant engineering challenges. We can’t do them today, but could well be able 100-200 years. Class II impossibilities sit on the edge of our current knowledge of physics. They may be possible in the far future, but getting there would require a big breakthrough. Class III impossibilities actually break the laws of physics. This doesn’t totally rule them out, as our understanding of physics can go through major shifts (Kuhn’s ‘paradigm shifts’), and it could be that we see things sufficiently differently in the future that they could become possible – but for now they are no-nos.
All the way through Kaku has a light, highly approachable style. This is no Brief History of Time – it’s not the sort of book you are going to start on and then give up because it becomes impenetrable. (To be fair, Brief History isn’t really like this, but it has the reputation.) Instead we get superb insights into just why the technology in question needs to be labelled impossible, and what the potential ways around the difficulties are. It is always entertaining and in terms of the sheer volume of content that is fitted in without ever seeming heavy going it’s a tour de force. There are so many examples it’s difficult to pick out favourites, but I liked the way we discover that force fields, seemingly so straightforward in Sci-Fi, would actually be ludicrously complex, while robot fans (and supporters of the Singularity) idea might be shocked at just how difficult it is to produce true artificial intelligence.
No book is absolutely perfect. If I had to pick out issues, there are just two small ones. I do think that there’s a slight tendency to over-simplify. It’s always hugely difficult to describe complex physics like quantum theory in a few lines, and the simplification that is essential to be able to do this occasionally makes a point slightly inaccurate. There’s also a slight oddity in the way time travel is a Class II impossibility, but precognition is Class III impossibility. Unless you are only accepting a parallel worlds interpretation, where time travel means involuntarily moving to alternative universes, then travelling into the past (or even sending a message into the past) implies a form of precognition. There seems to be a consistency issue here.
These are very minor points, though (and the simplification is almost a necessity in a book that has the huge scope of this one). Overall it’s one of my favourite popular science reads in a good while and works wonderfully both as an addition to an existing popular science shelf or as a book to encourage a first toe in the water for someone who has never strayed beyond watching Star Trek or Dr Who before. Recommended.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...