Skip to main content

Collider – Paul Halpern ****

The Large Hadron Collider at CERN is set to give us deep insights into the nature of matter and the origins of the universe. It could provide evidence of extra dimensions, and give us an idea of whether string theorists are on the right track. This is fascinating stuff, and it is what Paul Halpern aims to explain in Collider, after first giving us a history of high energy physics and particle accelerators.
I wasn’t very optimistic about the book at first. It jumps straight into the Higgs mechanism and spontaneous symmetry breaking without explaining these concepts in much detail for the layperson. I was a little worried the book was going to turn out to be over-technical, and only fully understandable to those with a physics degree. Luckily, this wasn’t the case at all, and when the book gets on to talking about the LHC in detail, and how it works and what it will be looking for, the concepts are fleshed out clearly and simply. In fact, Halpern has a knack of explaining tricky ideas well for the general reader in the minimum of words. Where something isn’t entirely clear, the book still leaves the reader with a fairly good grasp of what’s being discussed.
Overall, the science of the LHC is covered quite well, and there’s an entertaining section on ‘Citizens Against the Large Hadron Collider’, a group concerned about world destroying scenarios at CERN, in which Halpern explains why there’s nothing to worry about. The most readable parts of the book, however, are in the middle, where it covers earlier high energy research and the people involved.
The best chapter is on the first particle accelerators, and contains a significant amount of biographical information about Ernest Rutherford, Ernest Walton, John Cockcroft, Ernest Lawrence, and Rolf Wideroe, someone I knew little about beforehand. Wideroe was a Norwegian engineer whose research provided a lot of the impetus for Rutherford’s team at the Canvendish Laboratory in Cambridge to build the linear accelerator they used to split the nucleus of lithium. He also inspired Lawrence to build the first cyclotron, a circular accelerator. Another highlight, which again shows the book is rather better on history and surrounding issues, is the account of what happened to the Superconducting Super Collider, intended for Texas but eventually never completed. The section contains a number of lessons to be borne in mind when future, similar projects are planned.
There’s one small point. The book costs £19.00 in the shops, which I think is a bit much; £15.00 would be more appropriate. Overall, though, this is an interesting book, great for anyone wanting to know what could happen at the LHC over the coming years and the context in which the project has been developed. This is definitely a solid four star book, and I got a lot from it.

Paperback:  
Using these links earns us commission at no cost to you
Review by Matt Chorley

Comments

Popular posts from this blog

Vector - Robyn Arianrhod ****

This is a remarkable book for the right audience (more on that in a moment), but one that's hard to classify. It's part history of science/maths, part popular maths and even has a smidgen of textbook about it, as it has more full-on mathematical content that a typical title for the general public usually has. What Robyn Arianrhod does in painstaking detail is to record the development of the concept of vectors, vector calculus and their big cousin tensors. These are mathematical tools that would become crucial for physics, not to mention more recently, for example, in the more exotic aspects of computing. Let's get the audience thing out of the way. Early on in the book we get a sentence beginning ‘You likely first learned integral calculus by…’ The assumption is very much that the reader already knows the basics of maths at least to A-level (level to start an undergraduate degree in a 'hard' science or maths) and has no problem with practical use of calculus. Altho

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on

The Art of Uncertainty - David Spiegelhalter *****

There's something odd about this chunky book on probability - the title doesn't mention the P word at all. This is because David Spiegelhalter (Professor Sir David to give him his full title) has what some mathematicians would consider a controversial viewpoint. As he puts it 'all probabilities are judgements expressing personal uncertainty.' He strongly (and convincingly) argues that while the mathematical approach to probability is about concrete, factual values, outside of the 'natural' probabilities behind quantum effects, almost all real world probability is a subjective experience, better described by more subjective terms like uncertainty, chance and luck. A classic way to distinguish between those taking the frequentist approach to probability and the Bayesian approach is their attitude to what the probability is of a fair coin coming up heads or tails after the coin has been tossed but before we have looked at it. The frequentist would say it's def