Skip to main content

Collider – Paul Halpern ****

The Large Hadron Collider at CERN is set to give us deep insights into the nature of matter and the origins of the universe. It could provide evidence of extra dimensions, and give us an idea of whether string theorists are on the right track. This is fascinating stuff, and it is what Paul Halpern aims to explain in Collider, after first giving us a history of high energy physics and particle accelerators.
I wasn’t very optimistic about the book at first. It jumps straight into the Higgs mechanism and spontaneous symmetry breaking without explaining these concepts in much detail for the layperson. I was a little worried the book was going to turn out to be over-technical, and only fully understandable to those with a physics degree. Luckily, this wasn’t the case at all, and when the book gets on to talking about the LHC in detail, and how it works and what it will be looking for, the concepts are fleshed out clearly and simply. In fact, Halpern has a knack of explaining tricky ideas well for the general reader in the minimum of words. Where something isn’t entirely clear, the book still leaves the reader with a fairly good grasp of what’s being discussed.
Overall, the science of the LHC is covered quite well, and there’s an entertaining section on ‘Citizens Against the Large Hadron Collider’, a group concerned about world destroying scenarios at CERN, in which Halpern explains why there’s nothing to worry about. The most readable parts of the book, however, are in the middle, where it covers earlier high energy research and the people involved.
The best chapter is on the first particle accelerators, and contains a significant amount of biographical information about Ernest Rutherford, Ernest Walton, John Cockcroft, Ernest Lawrence, and Rolf Wideroe, someone I knew little about beforehand. Wideroe was a Norwegian engineer whose research provided a lot of the impetus for Rutherford’s team at the Canvendish Laboratory in Cambridge to build the linear accelerator they used to split the nucleus of lithium. He also inspired Lawrence to build the first cyclotron, a circular accelerator. Another highlight, which again shows the book is rather better on history and surrounding issues, is the account of what happened to the Superconducting Super Collider, intended for Texas but eventually never completed. The section contains a number of lessons to be borne in mind when future, similar projects are planned.
There’s one small point. The book costs £19.00 in the shops, which I think is a bit much; £15.00 would be more appropriate. Overall, though, this is an interesting book, great for anyone wanting to know what could happen at the LHC over the coming years and the context in which the project has been developed. This is definitely a solid four star book, and I got a lot from it.

Paperback:  
Using these links earns us commission at no cost to you
Review by Matt Chorley

Comments

Popular posts from this blog

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under

Regeneration - Paul Hawken **

This is a really big book. I don't mean big in the sense of important, but physically enormous for what it is - it's roughly the size of a children's annual, though a lot thicker. Interestingly, the format appears to be a Paul Hawken speciality - he did it with his previous title, Drawdown ,  though that was far less glossy. Paul Hawken's aim is to put forward a solution to climate change driven from humans rather than from the science. The tag line on the back of the book reads 'The climate crisis is not at science problem. It is a human problem.' And that itself is a problem. It's not that climate change isn't a human problem, but rather that it's both a human problem and a science problem - requiring human and science-based solutions. But the approach taken in this book is anything but scientific. It's a bit like saying the Covid-19 pandemic is a human problem, not a science problem. The pandemic is indeed a human problem, but if we'd tr