Skip to main content

Why Us? – James Le Fanu ***

Subtitled ‘how science rediscovered the mystery of ourselves’ this is a celebration of the fact that simple reductionist science, based on mapping genes to function and monitoring individual areas of the brain, has not been able to pin down just why humans are as they are and behave as they do – and that’s not a bad thing. Because science isn’t an infallible source of truth, as some seem to think. Not scientists, I hasten to add. They are usually well aware that science isn’t about finding ‘truth’ but the best model we can devise given current data. All scientific theories and models are subject to future revision and scrapping. Which is an important lesson to learn – but it’s not really what James Le Fanu is setting out to tell us.
What Why Us sets out to do is to take on both the idea that evolution by natural selection can be responsible for the origin of species (as opposed to micro-evolutionary changes like Darwin’s famous finch bills), and the idea that we can understand how the brain produces a conscious being. On evolution, Le Fanu seems to be putting forward something similar to Stephen Gould’s idea of punctuated equilibrium, but I have to say ‘seems to be’ because his approach is much more about knocking conventional evolutionary wisdom than it is about putting forward a coherent alternative.
Le Fanu rehearses some of the hoary old arguments about lack of transitional fossils between species and much more. The trouble is, he seems to be arguing against a popular science view of evolution, rather than the sort of thing a modern evolutionary biologist would recognize. Inevitably things are simplified for the general reader, and I’m not sure Le Fanu’s arguments hold up against the real science. In one sense his attack is useful. Most scientists are reluctant to challenge evolutionary theory because of fear that creationists will pounce on perfectly reasonable scientific doubt about the detail of the science and suggest that just because evolutionary theory isn’t perfect, then the creationist alternative must be true. There are flaws in evolutionary theory – but I’m not sure they’re as big or as significant as Le Fanu suggests. And even if they are killer blows for the current theory, I don’t think that they show, as Le Fanu seems to suggest, that we have to hold up our hands and say ‘Here’s something science can’t deal with.’ It just means we need a better theory.
I’ve a little more sympathy with his attack on the idea that the conscious human self is nothing more than chemical reactions and electrical impulses – unlike evolution, there really isn’t a good explanation for where our conscious minds come from, how they are produced by that electro-chemical mix. Here Le Fanu is on stronger ground, though again I’m not sure he doesn’t leap too far to say that this is something science will never address. Yes there is, as the subtitle puts it, a ‘mystery of ourselves’, but it might not remain so forever. Even so, it’s certainly true that all the detail biologists have studied on the brain and how our DNA maps out what we will be gives us no real clue as to the answer to this conundrum – it’s more like to come from a totally different direction, perhaps from physics rather than biology.
If I’m honest, there are a couple of things I don’t like here. One is the writing style. Throughout Le Fanu maintains the sort of flowery, hand-waving style that’s fine for introductions and conclusions, but not for the meat of a book. I would have liked the style to settle down a bit. Perhaps more importantly, he’s more than a touch cavalier with the facts to fit with that hand-waving style. Four quick examples. He describes the Big Bang as taking place 15 billion years ago – that’s over a billion years out from current estimates. Secondly, he makes it sound as if the Big Bang is definite, comparing it with the relationships between human precursors, which is based on theory with limited substantiation – in fact the Big Bang is very similar in its dependence on one possible theory among several.
And then there’s a bizarre statement about a stone age carving of a bison. ‘It is not a sculpture of a specific object, but rather a generalized image of a class of objects… It is the idea of a bison.’ How does he know this? You can imagine a writer 10,000 years in the future saying of Nelson’s column: ‘It is not a sculpture of a specific man, but rather a generalized image of a class of objects… It is the idea of a man.’ Really strange. Oddest of all is the statement ‘There are (to put it simply) three forces of order’ which he identifies as gravity, genes and the human mind. What about the other three fundamental forces of nature? Does he not think, for example, that the electromagnetic force, without which there would be no matter (and even if there was, objects would not be able to touch each other) is not an important force of order? This smacks of ignorance. He does make a reference to there being four forces later on, but it’s a throwaway line, as if the others are relatively insignificant, rather than being vastly more powerful than gravity.
All in all, what James Le Fanu sets out to do is not a bad thing, but this is a muddled book that doesn’t achieve that goal.

Paperback:  
Using these links earns us commission at no cost to you  
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Vector - Robyn Arianrhod ****

This is a remarkable book for the right audience (more on that in a moment), but one that's hard to classify. It's part history of science/maths, part popular maths and even has a smidgen of textbook about it, as it has more full-on mathematical content that a typical title for the general public usually has. What Robyn Arianrhod does in painstaking detail is to record the development of the concept of vectors, vector calculus and their big cousin tensors. These are mathematical tools that would become crucial for physics, not to mention more recently, for example, in the more exotic aspects of computing. Let's get the audience thing out of the way. Early on in the book we get a sentence beginning ‘You likely first learned integral calculus by…’ The assumption is very much that the reader already knows the basics of maths at least to A-level (level to start an undergraduate degree in a 'hard' science or maths) and has no problem with practical use of calculus. Altho

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on