Skip to main content

Nothing: a very short introduction – Frank Close ***

I came to this book for the title. Like “Zero”, “Symmetry”, or “Shapes”, “Nothing” is one of those concepts that seems to offer an intriguing cross-cutting view of science. A few pages into the book, I thought it would deliver on the promise of the title page. But after a couple of chapters I realised that this is a book about Something, not Nothing. A few chapters later it dawned on me that the Something was actually Basic Ideas in Modern Physics. Basic Ideas in Modern Physics is an interesting topic, but not nearly as novel and mind-bending as Nothing.
It’s not Frank Close’s fault that modern physics is preoccupied with nothing-related issues: what happened at the beginning of the universe, when something turned into nothing; how the very smallest particles (or waves) behave; the geometry of space and time. And if you would like to trot through the basics of fields, waves, special and general relativity, quantum theory, the Big Bang, and the structure of the atom, then this book is just what it says on the packet: a stimulating way into new subjects. But somehow I expected more from Nothing.
What is in the book for those who have already trotted through the basics with other science writers? Some old friends reappear – the falling muon to illustrate special relativity, the pencil-on-its-point to describe symmetry breaking. But Close also takes some new angles on the old topics. In general relativity, objects tend to take the shortest route between two points. Close compares this to the tradition of “shortest path” thinking in other fields, like optics. He notes how Einstein’s equations for special relativity are the same, mathematically, as those in Lorentz’s theory of the ether. And he has a good eye for historical details. It’s one thing to say how one might lay out a theory of special relativity. But how did Einstein himself do it, using what he knew at the time? Close has the question – if not the answer – at his fingertips.
But Close’s angles are sometimes too oblique. In explaining special relativity he starts out with the common-sense notion of simultaneity, and explains how it is defeated if we assume light is constant. He then jumps to the conclusion that objects must get longer, and clocks run slower, for observers of a moving object. It’s not clear how he made the jump. We see that Lorentz’s equations are the same as Einstein’s, but it’s not clear why they are the same. His chapter on the quantum vacuum is interesting, with some striking examples of experiments that cast light on the “infinite sea” of the vacuum. But the chapter has about three different arguments for different kinds of “infinite sea”, and it is not obvious how they link up.
Perhaps it was the small font or pocket-sized format, but I found it hard to get a proper grip on this book. It is a compact brainstorm. Close asks lots of questions, but it’s not clear when each one is answered. His no-fuss prose fits a lot in, but sometimes it’s too compressed. He throws out ideas – the anthropic principle, “emergence”, multiple worlds – that look promising but fall out of sight of the reader. By turns stimulating and frustrating, Nothing leaves you wanting to find out more about Basic Ideas in Modern Physics. Which is, after all, better than finding out about nothing.

Paperback:  
Using these links earns us commission at no cost to you  
Review by Michael Bycroft

Comments

Popular posts from this blog

Ctrl+Alt+Chaos - Joe Tidy ****

Anyone like me with a background in programming is likely to be fascinated (if horrified) by books that present stories of hacking and other destructive work mostly by young males, some of whom have remarkable abilities with code, but use it for unpleasant purposes. I remember reading Clifford Stoll's 1990 book The Cuckoo's Egg about the first ever network worm (the 1988 ARPANet worm, which accidentally did more damage than was intended) - the book is so engraved in my mind I could still remember who the author was decades later. This is very much in the same vein,  but brings the story into the true internet age. Joe Tidy gives us real insights into the often-teen hacking gangs, many with members from the US and UK, who have caused online chaos and real harm. These attacks seem to have mostly started as pranks, but have moved into financial extortion and attempts to destroy others' lives through doxing, swatting (sending false messages to the police resulting in a SWAT te...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...