Skip to main content

Science: a four thousand year history – Patricia Fara *****

This is the rare case of a weighty tome (literally – at over a kilo, my wrists were like jelly by the end) that’s also a page turner. Patricia Fara has managed the near-impossible: a history of all of science. It has been tried before. John Gribbin, for instance, made an attempt with Science: A History – but his book limited itself to Galileo onwards, was 600+ pages long and frankly not all that readable as popular science. Fara’s, despite the weight, slips in at a more manageable 384 pages, covers the whole span of science and was a delight to read.
I have elsewhere been a little heavy on academic authors, which Fara is. All too often, their books read like a transcript of a lecture – and a dull one at that. They never use three syllables when they can get away with four. The writing here isn’t like that. It’s modern, easy to digest and superbly informative. But that’s not to say that the book is simplistic in its approach to science. It’s not just a catalogue of scientific breakthroughs. Not only does Fara do away mostly with Kuhn-style revolutions and individual scientific heroes, she ensures that the science is placed in its essential political and social context. It’s easy to pretend that science is something separate from society – Fara makes it clear that this isn’t the case, and never has been.
It’s hard to pick out any specific examples that stand out, because this is such a magnificent, well-woven sweep through history. From the Babylonian origins of the early precursors to science to the latest genetic research, it’s all there. Yet there’s not a feeling of hasty summary. Fara lingers long enough on key people to get a true popular science feeling of engagement. And she includes the institutions like the Royal Society that have had an impact as much as individuals.
Inevitably there are going to be some small issues. Anything trying to be everything to everyone will stumble occasionally. Being a little biased on the subject of Roger Bacon, I think Fara underplays his significance. Perhaps because the structure of the book leaves ‘experiment’ as a concept until later in the chronology, she makes no mention, for instance, of the way Bacon devotes a whole section of his Opus Majus to the significance of experiment. There’s also the occasional factual oddity. For example, she comments that when Marconi sent a radio message across the Atlantic ‘for the first time, the two sides of the Atlantic were in virtually instantaneous contact,’ which really isn’t true. The difference in speed between radio and the transatlantic cable was relatively slight. She also perpetuates the myth that the term ‘bug’ in computing came from insects shorting out circuits, when the term had been in use in engineering for many years before.
Most seriously, her personal politics are more apparent than is, perhaps, desirable in a book like this. But these are all minor concerns in what is a brilliant undertaking. I hope that the publisher rushes out an affordable mass market paperback version of this book, as it deserves the widest audience possible.

Hardback:  
Using these links earns us commission at no cost to you   
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...