Skip to main content

Coincidences, Chaos and all that Math Jazz – Edward B. Burger & Michael Starbird ****

It’s not often someone manages to write a book on the topic of maths and makes it light, easy going and fun – yet Edward Burger and Michael Starbird have done just that.
In a relatively slim volume, the authors manage to cover a whole host of topics, without ever becoming terrifying. It’s not just the probability and chaos theory suggested by the title – though of course they make an appearance – but much more. Often, without resorting to formulae, there are simple, clear examples – for example, when dealing with chaos there is a demonstration of how easily number sequences can deviate that uses Excel as the generator of the chaotic sequence.
Again, series are illustrated using a wonderful physical example involving stacking playing cards that seems absolutely impossible if seen through the eyes of common sense – as often is the case with good popular maths, common sense, which is hopeless at maths, takes a battering. There’s a good section on topology too, a subject that is rarely well explained in popular books which tend to make confusing statements like telling the reader that a doughnut is the same topologically as a tea cup without explaining why, or spotting that this is only true of some doughnuts and some cups. Burger & Starbird manage to get the message across while maintaining the precision required for maths.
I do have one hesitation about this book. Because it has such a breezy manner, and speeds through topics so lightly, it can sometimes oversimplify. Sometimes surprising mathematical results are just stated plonkingly, without explaining why it’s the case. Elsewhere, the high speed delivery results in information that is only partially true. Take the example of airline safety. After pointing out how easy it is to misuse statistics, this is arguably what the authors proceed to do. They compare deaths per passenger mile by plane and deaths per passenger mile by car. But this overlooks the fact that more fatal crashes take place in the take off/climb and descent/landing parts of the journey than do in the cruise segment – distance isn’t the issue with airline crashes, it’s number of take-offs and landings.
If, instead, you make a comparison of the chance of being killed on a single journey in a plane with the chance of being killed on a single journey in a car (and most people want to know “will I survive this journey?”), then the car is actually safer. Taken over a year, of course, there are many more car journeys, so the plane becomes safer – but the difference between the two modes of transport is much less significant than basing the comparison on deaths per mile. The authors also take a rather parochial view, arguing that if people didn’t fly they would drive. This may be true in the US, but in most of the world, the long distance alternative is likely to be don’t go at all, or go by train. Try driving from London to New York. This, then, was an unfortunate example to use, because it hides a huge can of worms.
Such problems, though, are few and far between. This a great across-the-board intro to the fun of maths. Having read it, I would then recommend the reader to find a good popular book to get more depth on any topics of interest (for instance, my own A Brief History of Infinity inevitably goes into a lot more than is possible in this book’s short dabble with infinity) – but do start here.

Paperback 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...