Skip to main content

The God Effect – Brian Clegg *****

We are used to hearing about “Einstein’s greatest mistake” being his throwing in the cosmological constant to explain the expansion of the universe. These days this seems less of a mistake than it was first thought. But there’s one thing he definitely didn’t get right – that’s quantum entanglement, a concept so bizarre, that Einstein used it as an example of why quantum theory had to be wrong.
In fact it was Einstein who for once was mistaken, and entanglement has proved, as Brian Clegg’s subtitle suggests, to be one of science’s strangest phenomena. Imagine a link between two particles that is so low level that you can separate them to either side of the universe and a change in one particle will be instantly reflected in the other. Forget special relativity – the spooky connection of entanglement doesn’t know about the light speed barrier.
The God Effect (the title is a reference to the Higgs boson, also known as the God Particle, which it has been suggested requires entanglement to function) begins with an excellent background to where entanglement came from – Einstein’s original “entanglement busting” paper EPR, early attempts to show whether or not entanglement existed and the definitive experiments that demonstrated it in action. Although we’re dealing here with quantum physics at its most mindboggling, Clegg makes a great job of explaining what was going on in layman’s terms, and bringing alive the major characters not widely known outside this field, such as John Bell and Alain Aspect.
Where the book really triumphs, though, is when he moves onto the remarkable applications of entanglement that have started to be developed over the last few years. Unbreakable encryption, computers that can crack problems that would take conventional computers longer than the lifetime of the universe to cope with, even Star Trek-style matter transmitters. It’s great stuff. I particularly liked the chapter on why entanglement doesn’t allow us to send faster than light messages. Most of the books I’ve read on the subject just dismiss this as obvious, but it isn’t – in fact it’s what most people think of as soon as they hear about entanglement: surely it could be used to send faster than light messages. Clegg explains just what the implications would be – why faster than light messages would allow us to send information back in time – then shows how entanglement entices, but can never actually deliver on this promise.
There’s also some fun speculation from top scientists on what else entanglement could do – not just providing a mechanism for the Higgs boson, but also the existence of life, telepathy and more. The only criticism I have is that the chapter on quantum computers told me rather more than I wanted to know about different ways to make quantum computers work – it was still interesting, but I didn’t need that much detail.
Overall this is a superb exploration of this weird and wonderful physical phenomenon and the ways it could change our lives. It’s well written and approachable without any technical background, though I think it may also appeal to undergraduates, as entanglement tends to get very limited coverage on physics courses. Recommended.

Paperback:
  
Kindle 
Using these links earns us commission at no cost to you
Review by Martin O'Brien
Please note, this title is written by the editor of the Popular Science website. Our review is still an honest opinion – and we could hardly omit the book – but do want to make the connection clear.

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur