Skip to main content

The God Effect – Brian Clegg *****

We are used to hearing about “Einstein’s greatest mistake” being his throwing in the cosmological constant to explain the expansion of the universe. These days this seems less of a mistake than it was first thought. But there’s one thing he definitely didn’t get right – that’s quantum entanglement, a concept so bizarre, that Einstein used it as an example of why quantum theory had to be wrong.
In fact it was Einstein who for once was mistaken, and entanglement has proved, as Brian Clegg’s subtitle suggests, to be one of science’s strangest phenomena. Imagine a link between two particles that is so low level that you can separate them to either side of the universe and a change in one particle will be instantly reflected in the other. Forget special relativity – the spooky connection of entanglement doesn’t know about the light speed barrier.
The God Effect (the title is a reference to the Higgs boson, also known as the God Particle, which it has been suggested requires entanglement to function) begins with an excellent background to where entanglement came from – Einstein’s original “entanglement busting” paper EPR, early attempts to show whether or not entanglement existed and the definitive experiments that demonstrated it in action. Although we’re dealing here with quantum physics at its most mindboggling, Clegg makes a great job of explaining what was going on in layman’s terms, and bringing alive the major characters not widely known outside this field, such as John Bell and Alain Aspect.
Where the book really triumphs, though, is when he moves onto the remarkable applications of entanglement that have started to be developed over the last few years. Unbreakable encryption, computers that can crack problems that would take conventional computers longer than the lifetime of the universe to cope with, even Star Trek-style matter transmitters. It’s great stuff. I particularly liked the chapter on why entanglement doesn’t allow us to send faster than light messages. Most of the books I’ve read on the subject just dismiss this as obvious, but it isn’t – in fact it’s what most people think of as soon as they hear about entanglement: surely it could be used to send faster than light messages. Clegg explains just what the implications would be – why faster than light messages would allow us to send information back in time – then shows how entanglement entices, but can never actually deliver on this promise.
There’s also some fun speculation from top scientists on what else entanglement could do – not just providing a mechanism for the Higgs boson, but also the existence of life, telepathy and more. The only criticism I have is that the chapter on quantum computers told me rather more than I wanted to know about different ways to make quantum computers work – it was still interesting, but I didn’t need that much detail.
Overall this is a superb exploration of this weird and wonderful physical phenomenon and the ways it could change our lives. It’s well written and approachable without any technical background, though I think it may also appeal to undergraduates, as entanglement tends to get very limited coverage on physics courses. Recommended.

Paperback:
  
Kindle 
Using these links earns us commission at no cost to you
Review by Martin O'Brien
Please note, this title is written by the editor of the Popular Science website. Our review is still an honest opinion – and we could hardly omit the book – but do want to make the connection clear.

Comments

Popular posts from this blog

Sticky - Laurie Winkless *****

There has been a suggestion doing the rounds that if you don't get into a book after the first few pages, you should give it up - because life's too short. If I'd followed this suggestion, I wouldn't have discovered what a brilliant book Sticky is. I'll get back to that, but it's worth saying first why Laurie Winkless's book on what makes things sticky, produces friction and grip - or for that matter lubricates - is so good. Without doubt, Winkless is great at bringing storytelling to her writing. She frames her information well with interviews, visits to places and her personal experiences. But of itself, that isn't enough. The reason, for example, I was captivated by her section on the remarkable (though oddly, given the book's title, entirely non-sticky) adhesive qualities of the gecko's foot was really about the way that Winkless takes us through the different viewpoints on how the foot's adhesion works. We get plenty of science and also

Laurie Winkless - Four Way Interview

Laurie Winkless ( @laurie_winkless ) is an Irish physicist and author. After a physics degree and a masters in space science, she joined the UK’s National Physical Laboratory as a research scientist, specialising in functional materials. Now based in New Zealand, Laurie has been communicating science to the public for 15 years. Since leaving the lab, she has worked with scientific institutes, engineering companies, universities, and astronauts, amongst others. Her writing has featured in outlets including Forbes, Wired, and Esquire, and she appeared in The Times magazine as a leading light in STEM. Laurie’s first book was Science and the City , and her new title is Sticky , also published by Bloomsbury. Why science? I was a very curious kid: always asking questions about how things worked. I suspect I drove my parents mad, but they never showed it. Instead, they encouraged me to explore those questions. From taking me to the library every week, to teaching me how to use different tools

The Car That Knew Too Much - Jean-François Bonnefon ****

This slim book is unusual in taking us through the story of a single scientific study - and it's very informative in the way that it does it. The book makes slightly strange reading, as I was one of the participants in the study - but that's not surprising. According to Jean-François Bonnefon, by the time the book was published, around 100 million people worldwide had taken part in the Moral Machine experiment. The idea behind the study was to see how the public felt self-driving cars should make what are effectively moral decisions. Specifically, in a dilemma where there was a choice to be made between, say, killing one or other person or groups of people, how should the car decide? As a concept, Bonnefon makes it clear this is a descendent of the classic 'trolley' problem where participants are asked to decide, for example, whether or not to switch the points so a tram that is currently going to kill five people will be switched to a track where it will kill one perso