Skip to main content

The God Effect – Brian Clegg *****

We are used to hearing about “Einstein’s greatest mistake” being his throwing in the cosmological constant to explain the expansion of the universe. These days this seems less of a mistake than it was first thought. But there’s one thing he definitely didn’t get right – that’s quantum entanglement, a concept so bizarre, that Einstein used it as an example of why quantum theory had to be wrong.
In fact it was Einstein who for once was mistaken, and entanglement has proved, as Brian Clegg’s subtitle suggests, to be one of science’s strangest phenomena. Imagine a link between two particles that is so low level that you can separate them to either side of the universe and a change in one particle will be instantly reflected in the other. Forget special relativity – the spooky connection of entanglement doesn’t know about the light speed barrier.
The God Effect (the title is a reference to the Higgs boson, also known as the God Particle, which it has been suggested requires entanglement to function) begins with an excellent background to where entanglement came from – Einstein’s original “entanglement busting” paper EPR, early attempts to show whether or not entanglement existed and the definitive experiments that demonstrated it in action. Although we’re dealing here with quantum physics at its most mindboggling, Clegg makes a great job of explaining what was going on in layman’s terms, and bringing alive the major characters not widely known outside this field, such as John Bell and Alain Aspect.
Where the book really triumphs, though, is when he moves onto the remarkable applications of entanglement that have started to be developed over the last few years. Unbreakable encryption, computers that can crack problems that would take conventional computers longer than the lifetime of the universe to cope with, even Star Trek-style matter transmitters. It’s great stuff. I particularly liked the chapter on why entanglement doesn’t allow us to send faster than light messages. Most of the books I’ve read on the subject just dismiss this as obvious, but it isn’t – in fact it’s what most people think of as soon as they hear about entanglement: surely it could be used to send faster than light messages. Clegg explains just what the implications would be – why faster than light messages would allow us to send information back in time – then shows how entanglement entices, but can never actually deliver on this promise.
There’s also some fun speculation from top scientists on what else entanglement could do – not just providing a mechanism for the Higgs boson, but also the existence of life, telepathy and more. The only criticism I have is that the chapter on quantum computers told me rather more than I wanted to know about different ways to make quantum computers work – it was still interesting, but I didn’t need that much detail.
Overall this is a superb exploration of this weird and wonderful physical phenomenon and the ways it could change our lives. It’s well written and approachable without any technical background, though I think it may also appeal to undergraduates, as entanglement tends to get very limited coverage on physics courses. Recommended.

Paperback:
  
Kindle 
Using these links earns us commission at no cost to you
Review by Martin O'Brien
Please note, this title is written by the editor of the Popular Science website. Our review is still an honest opinion – and we could hardly omit the book – but do want to make the connection clear.

Comments

Popular posts from this blog

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

On the Fringe - Michael Gordin *****

This little book is a pleasant surprise. That word 'little', by the way, is not intended as an insult, but a compliment. Kudos to OUP for realising that a book doesn't have to be three inches thick to be interesting. It's just 101 pages before you get to the notes - and that's plenty. The topic is fringe science or pseudoscience: it could be heavy going in a condensed form, but in fact Michael Gordin keeps the tone light and readable. In some ways, the most interesting bit is when Gordin plunges into just what pseudoscience actually is. As he points out, there are elements of subjectivity to this. For example, some would say that string theory is pseudoscience, even though many real scientists have dedicated their careers to it. Gordin also points out that, outside of denial (more on this a moment), many supporters of what most of us label pseudoscience do use the scientific method and see themselves as doing actual science. Gordin breaks pseudoscience down into a n

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under