Skip to main content

Quantum Theory Cannot Hurt You – Marcus Chown *****

Some while ago, one of www.popularscience.co.uk’s readers asked for some advice. He’d read our dismissive review of The Dancing Wu Li Masters and wondered if we could recommend an alternative as a good introduction to the amazing world of quantum theory. To be honest, we struggled. There are some reasonable books around, but they’re mostly quite dated, and none of them are top notch popular science. Luckily, though, Marcus Chown has come to our aid with Quantum Theory Cannot Hurt You, simply the best and most readable overview of the quantum world, with a great high level overview of general relativity thrown in as a bonus.
Right from the beginning you know that Chown is going to make this an interesting ride. He hits you between the eyes with some of the mind-boggling consequences of quantum physics and relativity, then takes the reader spiralling into the sub-atomic world to explore the nature of matter and the seemingly impossible behaviour of quantum particles that insist on being in more than one place at a time, in jumping over insuperable barriers and in making impossibly complex calculations trivial. All the half-familiar armoury of the quantum world, from Heisenberg’s Uncertainty Principle, to superfluids, slots into place as step-by-step Chown builds a readily comprehensible picture of what is going on all around us, if only we could see into the world of individual atoms and photons of light.
Barely pausing for breath, Chown then does a Matrix-like blast into space, going from concentrating on the very small to the universal implications of relativity. Building steadily on the critical assumption of the unchangeable speed of light (in a vacuum), we find E=mc2 popping into place, and the rapid transition from the strange concepts of special relativity to the universal impact of general relativity and its implications for gravity. Chown eloquently demonstrates that “the force of gravity does not exist” in a similar way to the realization the centrifugal force does not exist. Each is just the tendency of objects to carry on moving the same way unless forced to do otherwise by being restricted by the environment about them, rather than a true force.
By the end of the book, quantum theory and relativity will no longer seem a mystery. You might not be an expert – inevitably some of the topics are glossed over with some of the subtlety slightly distorted, but the big picture is just right. It’s interesting that Chown manages this without using any of the over-fancy diagrams plaguing many recent books on these subjects – he uses great word pictures to do away with the need for illustrations.
If there’s any moan here it’s the bit of cosmology that seems rather tacked on in the last chapter. While relativity is relevant to theories of how the universe has expanded, cosmological concerns are something of a tangential topic, and we end up with very quick overviews of the big bang, dark matter, inflation etc. which don’t feel quite as superb as the rest of the book. I’d rather have lost these and had more detail on some of the more central topics. But that is a very small point.
Overall, anyone who is baffled by quantum theory or relativity – anyone who wants a guide that doesn’t assume you know anything, but doesn’t patronize – should run, not walk, to the bookstore and lay their hands on Quantum Theory Cannot Hurt You.


Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

On the Fringe - Michael Gordin *****

This little book is a pleasant surprise. That word 'little', by the way, is not intended as an insult, but a compliment. Kudos to OUP for realising that a book doesn't have to be three inches thick to be interesting. It's just 101 pages before you get to the notes - and that's plenty. The topic is fringe science or pseudoscience: it could be heavy going in a condensed form, but in fact Michael Gordin keeps the tone light and readable. In some ways, the most interesting bit is when Gordin plunges into just what pseudoscience actually is. As he points out, there are elements of subjectivity to this. For example, some would say that string theory is pseudoscience, even though many real scientists have dedicated their careers to it. Gordin also points out that, outside of denial (more on this a moment), many supporters of what most of us label pseudoscience do use the scientific method and see themselves as doing actual science. Gordin breaks pseudoscience down into a n

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under