Skip to main content

The Elegant Universe – Brian Greene ****

The precursor to Brian Greene’s excellent The Fabric of the Cosmos, this is a good introduction to the current cosmological favourite, and attempt at linking general relativity and quantum theory, (super) string theory. Written it 1999, it has dated a little, but still gives a good laypersons view of string theory and its relationship to the two pillars of 20th century physics.
It’s a shame, in a way, that there’s so much overlap between this and Greene’s more recent book – so much so that unless you want to go into string theory in considerably more detail, you might as well go for The Fabric of the Cosmos, which has a lot more detail on those fundamental essentials, relativity and quantum theory, and does the job a little better.
However this shouldn’t undermine the fact that this is a very good book on the attempt to produce an overarching theory for the fundamentals of space, time and matter. Greene is always approachable (if occasionally irritatingly folksy) and makes a good effort of explaining complex concepts in a way that is still mind boggling (he can’t help that – it’s the nature of the beast), but possible to get your mind round.

Paperback:  
Using these links earns us commission at no cost to you 
Review by Brian Clegg

Comments

Popular posts from this blog

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'