Skip to main content

The Fabric of the Cosmos – Brian Greene *****

Subtitled “space, time and the texture of reality”, this could be seen as yet another book trying to do all of science – but it’s more finely tuned than that – and a much better read than most of the “tell you everything” books. In fact, what Brian Greene tries to do, and largely succeeds in, is explaining the two great underlying theories of science, both developed in the twentieth century – relativity and quantum theory – then extending beyond them to the nature of time and the composition and origins of the universe.
The first section of the book concentrates on relativity (mostly special, but quickly filling in general) and quantum theory. From there we pick up a description of what time is, whether “time’s arrow” is a realistic context, and how time slots into the quantum arena. The third section is more cosmologically oriented, spending a fair amount of space on the big bang and quantum fluctuations. Then we get onto the current preferred theories of matter – string theory and its extension to bring in “branes”. Although string theory has a lot of supporters it is pure hypothesis and very likely to disappear in the future – watch out, though for some more experimentally based gems like the remarkable and often ignored Casimir force. Finally there’s a summary “what’s it all about” section, including a delightful chapter on teleporters and time machines.
Taken individually, the subjects covered in each of the first four sections could be (and are) enough material to make a good book in their own right. There’s enough here, though to get a grip on what’s involved, and the interested reader should then go on to read a book with more detail on the individual section topics. The great thing about the way Greene has written this book is that it’s never overwhelming, yet there’s an opportunity to see how it all fits together (at least as much as it does all fit together in current theory – while those underlying aspects of relativity and quantum theory are solid, it all gets more speculative as you get further in). Although it’s quite a long book – over 500 pages with the notes and index – it doesn’t feel all that long, which is a great mercy. All too often others who have attempted books on this scale have produced tomes that are more effective as doorstops than as readable popular science.
There are some minor disappointments. Greene is a great popular science writer who pitches it just right, but occasionally his popularism is a little forced, for example in his use of characters from TV shows like the Simpsons and the X Files to illustrate his example. (The use, for example, of a duel between Itchy and Scratchy in his relativity section is a bit cringe making.) The book is beautifully illustrated, but occasionally these graphics get in the way of the facts. It’s a bit like when someone first gets hold of 3D graphics in a spreadsheet, and suddenly everything is 3D – some of the points would have been much clearer with a boring old two dimensional line diagram, rather than fancy 3D shading that gets in the way of the information the diagram is supposed to put across.
Even so, this is a strong entry from Greene, and certainly one of the best popular science books of 2004.

Paperback:  
Using these links earns us commission at no cost to you 
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...