Skip to main content

The Third Man of the Double Helix – Maurice Wilkins ****

This is a stunningly powerful insight into the workings of real science, and particularly of the discovery of the structure of DNA – the only reason it doesn’t have our ultimate five star accolade is that Wilkins is at best a pedestrian writer, and would have benefited hugely from a co-author.
If you ignore the preface, the worst written part of the book, and skip quickly through Wilkins early life, which has little in the way of useful insights and has all the stilted lack of humanity of a 1950s newsreel (for example “Their gramophone filled their home with humorous songs, such as George Formby, with his banjo, singing (with amusing innuendo) When I’m Cleaning Windows.”), you have a chance to see the very gradual, mistake-ridden, back-biting ride that is the reality of scientific discovery.
Inevitably most fascinating is the relationship between Wilkins and Rosalind Franklin, the less lionised half of the DNA quartet. Mention the discovery of the structure of DNA and two names immediately spring to mind – Crick and Watson. This is forgetting (hence the title of the book) the fact that Wilkins shared the Nobel Prize, and made the essential that would lead to that famous double helix first.
After Crick and Watson, the next name likely to occur to anyone is that Rosalind Franklin. She has in recent years been picked out as the victim of the male-dominated world’s attempts to suppress the work of a female scientist. As Wilkins says himself: “one side effect was that Rosalind’s male colleagues were to some extent demonised.” It certainly is unfortunate that the Nobel rules only allow a maximum of three recipients for the prize – showing it to be totally out-of-date when applied to modern science – and Franklin would have made a worthy fourth, but it seems quite likely that fourth is the correct position to put her in, and given the rules there was little other choice.
Wilkins’ book exposes a flawed three-way relationship that almost inevitably brought about confusion and resentment. Wilkins’ boss, Professor John Randall loomed over much of his career, helping Wilkins ahead, but at the same time often seeming jealous of any possibility that Wilkins could succeed independently. When Randall brought Franklin in, he told her that Wilkins was going to stop X-ray diffraction work (X-ray photography was Franklin’s speciality) and go back to using microscopes – only no one seems to have told Wilkins this. This set Wilkins and Franklin off on the wrong foot, as she felt that he was trespassing on her territory (never mind that he had made a significant discovery using X-rays before she even started work on DNA). Add to this Wilkins’ obvious difficulty with interacting with women and Franklin’s unusually strong sense of individual ownership in what should have been a shared project and the inevitable outcome was a human conflict that makes the story of DNA so much more entertaining and gripping.
We’ve had this story from about every direction now. It’s good that Maurice Wilkins has weighed in with his version, if only to balance the one-sidedness of some of the books that take Rosalind Franklin’s side. As much as Feynman writing about the atomic bomb project, this is an essential piece of first person observation from the heart of one of the greatest scientific discoveries ever. Hopefully it’s less fictional than Feynman’s tales, even if lacking his prose style – either way it is history from the coal face.

Paperback:  
Using these links earns us commission at no cost to you 
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...