Skip to main content

The Cryotron Files - Iain Dey and Douglas Buck ****

This is a rip-roaring tale of remarkable technological achievements, cold war spying and a suspicious death at a very early age that has inevitably fostered conspiracy theories. Dudley Buck, the subject of the biography, made three hugely important contributions to computer science - yet he's still not widely known. I've read many books on the history of computer science, and this is the first time I've ever heard of him.

We start off with fairly familiar territory with Buck's background - it might feel a little dull - but once he's involved in computing, things get a whole lot more interesting. About the only aspect of the early biography that stands out is that Buck had an extremely unpleasant idea of what constitutes a prank, including electrocuting people and trying to build a bomb on campus. However, though he apparently continued as a practical joker when older, it seems his attempts, while still malicious, became less life-threatening.

In terms of computing technology, Buck was a key figure in the development of the magnetic core memory that was the mainstay of computing in the 60s, was producing lithographic integrated circuits well before the famous names of the microchip world, and devised a ferroelectric memory that was impractical at the time, but has since become a real thing. And all this before dying at the tragically young age of 32. In fact, the ferroelectric memory was in masters dissertation, and he didn't get a doctorate until shockingly late, having already made huge contributions.

Of itself, his computer engineering is impressive, but what makes the story far more intriguing is Buck's involvement in the shady world of 1960s espionage. He did a considerable amount of work for the NSA and was regularly sent off on missions, at least one to the Soviet Union, the details of which are sometimes still fuzzy, but making him a far more interesting character for a biography. And then there's his death. Buck died of a pulmonary condition. It was immediately after opening a package containing a wide range of chemical substances for use in his experimental work - and not long after the visit of a number of soviet scientists. At the time of writing this review, relatively soon after the Skripal affair, it's hard not to give at least some weight to the speculation that his death - working as he was on technology that could be used in guided missiles - was not accidental.

There is, sadly, one real disappointment with this book. Authors Iain Dey (a business journalist) and Douglas Buck (Buck's son) used a researcher to dig up historical material. It's a shame they didn't also have a science consultant, because the science and technology part of the book is dire. Luckily, it's almost incidental to the way the story is presented - it's far more about people and history, but it's a real shame that it couldn't have been better.

To give an example, the 'cryotron' in the title of the book (of which more in a moment) was a superconducting device. Early on we are told superconductors are 'chemical elements that only conduct electricity at ultralow temperatures.' Leaving aside that most modern superconductors aren't chemical elements, the specific elements mentioned through the book, and which later we are told 'naturally blocked an electric current at room temperature' are lead, tantalum and niobium - all reasonably good conductors at room temperature. If the authors think lead blocks an electric current, I hope they don't have cars that use lead-acid batteries.

That's weak basic science, but even the computer science has problems. We're told that 'The acronym RAM soon stuck and is still used today as an indication of a computer's processing speed.' Really? But the biggest issue is the way the cryotron is handled. This was a potential replacement for valves and transistors (which at the time were typically as much as a centimetre across). The cryotron was a tiny device that could fulfil a similar role. Unfortunately it was a dead end. It was slower than transistors and crucially could only work if supercooled with liquid helium. It might have had niche applications, but the need to keep it at a couple of degrees above absolute zero would always prevent it from being mainstream. As it happens, within a few years transistors on microchips had left it way behind.

Dey and Buck spoil the genuinely huge significance of Buck senior's work on magnetic cores, lithography and ferroelectric memory by overplaying the importance of the cryotron. At one point they say Dudley Buck 'had invented a whole new field of physics and electrical engineering.' There was no new physics here. Elsewhere they claim that the cryotron 'evolved into a device called a Josephson junction.' This is ludicrous. It's like saying a 13 amp plug 'evolved into a microchip' as they both carry electricity, involve metal junctions and work at room temperature. A Josephson junction was a totally new concept, derived from basic physics and to suggest that it had any relation to a cryotron is an insult to Brian Josephson. The authors even go so far as to suggest that a quantum computer 'runs on modified cryotrons.' No, it really doesn't. This is an attempt to over-inflate the importance of one of Buck's ideas that was a failure. It was good idea, but it happened not to work out. Technology development is like that.

There is no doubt, then, that there are issues with this book, but I come back to the to key aspects that make it a great read. Buck was a genius - what he achieved in computer engineering in a short timescale (especially given the amount of time he spent on other things) was truly remarkable. And his life story, intwined as it was with Cold War politics and espionage, equally makes for a fascinating insight into unsettling times.



Review by Brian Clegg


Popular posts from this blog

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …

The Best of R. A. Lafferty (SF) – R. A. Lafferty ****

Throughout my high school years (1973–76) I carefully kept a list of all the science fiction I read. I’ve just dug it out, and it contains no fewer than 1,291 entries – almost all short stories I found in various SF magazines and multi-author anthologies. Right on the first page, the sixth item is ‘Thus We Frustrate Charlemagne’ by R. A. Lafferty, and his name appears another 32 times before the end of the list. This isn’t a peculiarity of my own tastes. Short stories were much more popular in those days than they are today, and any serious SF fan would have encountered Lafferty – a prolific writer of short fiction – in the same places I did.

But times change, and this Gollancz Masterworks volume has a quote from the Guardian on the back describing Lafferty as ‘the most important science fiction writer you’ve never heard of’. Hopefully this newly assembled collection will go some way to remedying that situation. It contains 22 short stories, mostly dating from the 1960s and 70s, each w…

David Beerling - Four Way Interview

David Beerling is the Sorby Professor of Natural Sciences, and Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield. His book The Emerald Planet (OUP, 2007) formed the basis of a major 3-part BBC TV series ‘How to Grow a Planet’. His latest title is Making Eden.

Why science?

I come from a non-academic background. None of my family, past or present, went to university, which may explain the following. In the final year of my degree in biological sciences at the University of Wales, Cardiff (around 1986), we all participated in a field course in mid-Wales, and I experienced an epiphany. I was undertaking a small research project on the population dynamics of bullheads (Cotus gobio), a common small freshwater fish, with a charismatic distinguished professor, and Fellow of the Royal Society in London. Under his guidance, I discovered the process of learning how nature works through the application of the scientific method. It was the most exciting t…