Skip to main content

How to Speak Science - Bruce Benamran ***

I can't remember a book where my mental picture of what the star rating would be has varied so much. At first glance, it looked like a solid 4 star title. It looks fun (despite the odd title - it sounds like it's a book on public speaking for geeks) and a flick through showed that it covers a huge amount of science topics, mostly physics - so it was promising as a beginner's overview. There is one small issue to be got out of the way on the coverage side. There's a whole lot of physics, with a gaping hole that is quantum theory. More on that later.

After reading a few pages, I had to downgrade that score to 3 stars because of the writing style. It oozes smugness. All became clear when I read the words 'For those of you who aren't familiar with my YouTube channel.' How to Speak Science reads like a transcript of a YouTube rant. The reason I love reading books and can hardly ever be bothered to watch videos is to get away from this kind of thing. However, I accept there is a whole generation for whom videos are more accessible than books - maybe it will appeal to them. But I suspect even YouTube fans might tire of the repeated use of 'people - the species not the magazine.' (There's a magazine?)

A good example of the feel is Bruce Benamran's treatment of Aristotle. We've all done a little Aristotle bashing in our time. It's hard not to when, for example, he decided women had fewer teeth than men without ever checking. But to repeatedly go on about it in an over-the-top fashion misses both that Aristotle was not a scientist, he was a philosopher, and that sometimes he did get things right - particularly in natural history, but he even prefigured Newton's first law of motion (admittedly to disprove the existence of the void).

So, when Benamran starts off by saying 'On one side we had Aristotelians; on the other side we had ... intelligent people,' and spends several pages knocking Aristotle it feels more like bluster than information. It doesn't help that the initial comment was about Aristotle's approach to matter when compared to the atomists. Yet at the time, Aristotle's model was arguably the more scientific - you could make predictions from it. The atomists' ideas were very different from modern atomic theory and fairly useless as science.

Still, I was prepared to accept a style that wasn't for me if the content was good. Unfortunately, in the first section this too has some real problems that dragged that mental indicator down to 2 stars or lower. The first part of the book is almost entirely history of science - and there are a considerable number of errors. Every writer makes a few mistakes. And I don't really worry if a book, say, gives Giordarno Bruno more credit than he deserves. (Interestingly, Benamran, who is clearly a Bruno fanboy, fails to list all Bruno's wildly unscientific concepts, a very different treatment to that he gives to Aristotle.) But some of the mistakes were way off the mark. To list a few:
  • We are told that after the loss of the library at Alexandria ‘the Western world lost all trace of the great thinkers of ancient times until rediscovering them in 1453.’ So when, for example, Roger Bacon made hundreds of references to Aristotle and other ancient Greeks' work in his Opus Majus from 1267, he was just making it up?
  • The 'plums' in the plum pudding model, we are told, were prunes. No - a plum pudding is a Christmas pudding, so we're talking sultanas and raisins.
  • We are told that until the Renaissance pretty much no one wondered why they couldn’t see at night, given the prevailing idea that light was emitted by the eyes. Obviously, even when this idea was dominant they did wonder and came up with explanations - and theories of light were already far more sophisticated than ancient Greek ideas by the 1200s.
  • We are told of second century Greek astronomer Ptolemy ‘to whom we owe the geocentric model’ - really?
  • Apparently 'Galileo was definitely the first person to use a telescope to look at the sky and make scientific observations.' Unfortunately, Thomas Harriot made astronomical observations several months earlier, and it's entirely likely some of the other early telescope makers also beat Galileo to it.
I'm sure there was no intention to mislead, but this section needs an overhaul. Thankfully, after the first 40 or 50 pages, the content settles down to have a lot more science and a lot less history, and there Benamran does better, bringing us back up to 3 stars. He covers a huge amount of material, often in an accessible fashion. The main criticism I'd have here is that he sometimes takes the formal approach you'd get in a physics lecture, rather than moving away from the way it was first presented to give a clearer picture - this is very obvious, for example, in his rather opaque exploration of special relativity.

Much of the rest of the book is accurate, though there is still a slight sloppiness to the content. We're told, for example, that 'Venus is the second brightest celestial body in the sky, after the sun and moon.' Doesn't that make it the third? We're told Clyde Tombaugh named his discovery Pluto, when, much more interestingly, it was named by eleven-year-old Venetia Burney. And Irish readers might be mildly horrified to be told that George FitzGerald attended Trinity College, Cambridge as opposed to his alma mater of Trinity College, Dublin.

Again, this is mostly history of science, though the biggest slip-up in later parts comes in a piece of physics: the photoelectric effect. The description simply doesn't make sense. What worries me is this book is labelled an 'International Bestseller'. I find it hard to believe that hundreds of thousands of people have read this incomprehensible text without being confused by it and asking for it to be corrected. The interesting bit of the photoelectric effect is that it's the frequency of the light that determines whether electricity is produced, not its intensity. So it's baffling to read: 'The effect occurred only above a certain intensity of light and not at all below that level.' The whole point is it's frequency, not intensity that matters. And later we get 'a low intensity light wave above a certain frequency did produce light.' That would be did produce electricity.

One last moan. Apart from a single chapter on life, almost all of this book is physics - yet as we've seen, there's hardly any quantum mechanics. We get a teaser for it. Benamran writes 'Some folks are probably surprised that I haven't yet discussed the Bohr model [of the atom]... please bolster your patience and we'll return to the subject when we talk about quantum mechanics.' It's puzzling, then to get to the last page without this happening. It's only here we discover that actually we'll have to wait for the next book to get onto quantum mechanics. I do not want cliff hangers in a popular science book. It's as if I flagged up this bit of the review at the top (as I did) and then right at the end said you'd find it in another review. It would have been far better to have left biology to another book and replaced the chapter on life with one on quantum physics.

So, my natural inclination because of the errors and style is to condemn the book - yet the fact remains, it's the kind of book that hopefully will get some people who wouldn't otherwise be interested in science. So I can't say 'Avoid it.' I hope it will inspire lots of people to read wider in the subject. It's a bit like most science on TV these days. I can't be enthusiastic about it, because it trivialises and over-simplifies. But if it gets some people interested enough to delve further, it's doing a useful job.

Paperback:  

Kindle:  

Review by Brian Clegg

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …