Skip to main content

Energy: the subtle concept – Jennifer Coopersmith ****

There are many reasons why, by rights, this shouldn’t be a great popular science title. Physicist Jennifer Coopersmith makes clear at the very beginning that a background in the physical sciences is assumed for parts of the book. We have quite a few equations, and throughout the book Coopersmith does not hesitate to mention such words as tensors, integrals and vectors, with little in the way of definitions for the layperson. In addition, there is a lot packed in here – at 360 pages, whilst there are certainly longer books out there, I wondered when starting the book whether the non-specialist might suffer from information overload.
And yet, the more I read this book, the more difficult it was to put it down, and I was always excited about returning to it. (To give some indication of how much I enjoyed the book: I am often unable to get down to reading until 8 or 9 o’clock at night during the week, because of a long commute. For this book, however, I got up especially early on one occasion to continue reading so I didn’t have to wait until the evening.) This is because, despite all the shortcomings mentioned above, the book also has a fascinating story to tell about the development of our understanding of energy as a physical quantity, and overall, the way Coopersmith describes this development means that these shortcomings, while never going away, become less significant.
We begin with Liebniz’s concept in the 17th century of vis viva, or ‘live force’, defined as some kind of ‘activity’ that was conserved and which was ‘the cause of all effect in the universe.’ After tracing developments in the 18th and 19th centuries, we go on to consider our modern understanding of kinetic and potential energy, via discussions of quantum mechanics (where we find that, contrary to what we had believed, the principle of conservation of energy can be violated due to the uncertainty principle) and relativity (a consequence of which is that we understand energy as being interchangeable with mass). Along the way, we meet a varied cast of characters who have contributed to our understanding of energy, and the biographical sections we get on the scientists involved complements well the explanations of the science, and makes the book, on the whole, very readable. Particularly interesting is the section on Sadi Carnot.
It is also the case that, whilst the science can often be challenging, if you put in the effort you will be more than compensated for your trouble, and it is possible to get real insights into the nature of energy, which, unlike less abstract physical quantities like mass or momentum, can be difficult to get a feel for. Yes, there are equations, and yes, there are tricky concepts which could have been introduced more gently. But if you persevere, and continue reading where you may otherwise be liable to get a little stuck, it is worth it, and you always get, at the very least, a good idea of the big picture.
I can’t completely overlook the drawbacks mentioned above, so am unable to give the book the full five stars. But I would still highly recommend this. Although perhaps ideal for physics undergraduates, this book is still of great value for the layperson, who would be likely to get a lot out of it.
Hardback:  
Review by Matt Chorley

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Mercury - William Sheehan ****

Driving to work one morning several years ago, I spotted a tiny white dot close to the rising sun. ‘That’s Venus,’ I said to myself. Almost immediately I saw another, much brighter dot a few degrees away. ‘No, that’s Venus – the first one must be, um ... Mercury.’ Even with a lifelong interest in astronomy, I always manage to forget Mercury.

With eight planets in the Solar System, one of them has to be the least interesting – and Mercury got the short straw. That’s a relative statement, though, and a diligent author could still dig up enough fascinating facts about that tiny dot by the Sun to fill a short book. William Sheehan has done a brilliant job of doing just that.

One of the reasons Mercury is so easy to forget is that it’s almost impossible to get a good view of it from Earth. Even after the invention of the telescope, which turned planets like Mars and Jupiter into explorable worlds, Mercury remained a mystery – and the subject of some pretty wild speculations. In 1686, for exa…

Everything You Know About Planet Earth is Wrong - Matt Brown ****

This is the latest of a series of 'Everything You Know About... is Wrong' books from Matt Brown. Although I always feel slightly hard done by as a result of the assertion in the title, as there are certainly things here I know that aren't wrong (I mean, come on, the first corrected piece of 'knowledge' is that 'The Earth is only 6,000 years old' and I can't imagine many readers will 'know' that), it's a handy format to provide what are often surprisingly little snippets of information that are very handy for 'did you know' conversations down the pub (or showing up your parents if you're a younger reader).

Some of the incorrect statements that head each article are well-covered, if often still believed (for example, people thought that world was flat before Columbus), some are a little tricksy in the wording (such as seas have to wash up against land) and some are just pleasantly surprising (countering the idea that gold is a rar…