Skip to main content

Wizard – Marc J. Seifer ****

I’ve given this biography of Nikola Tesla four stars to distinguish it from Tesla: Man Out of Time, as this is without doubt the better biography. Mark Seifer gives us much more detail than the earlier book, having access to better sources, and really makes it possible to understand the complex financial situation in the US in which Tesla was trying to finance his mind-boggling ideas. But there is still a big problem with this book.
Tesla wasn’t just a crackpot. One of the SI units is named after him – and for a good reason. He was a superb engineer and he single-handedly designed the AC system that we use today, including inventing the first serious AC motors, and the basis for practically every AC motor since. He also invented the fluorescent light (though never commercially developed it, as he had already moved onto his next excitement).
However, and it’s a big however, Tesla also was an over-the-top showman, who delighted in showing off by lighting up fancy bulbs with electricity that had been passed through his body – and, on the whole, he was nowhere near as good a scientist as an engineer.
Specifically, he rejected both relativity and quantum theory for decades after they were widely accepted in the scientific community, and he had a strange hangup about radio. He believed that the ‘Hertzian waves’ used by the likes of Marconi were a piffling use of electromagnetism for communication, and that instead it was possible to use ‘Tesla waves’ – mysterious longitudinal waves (compression waves like sound) he believed also exhibited by electromagnetism, and which he believed could be pumped through the Earth, using the Earth’s resonant frequency is such a way that amplitude grew with distance rather than falling off. With a big enough tower and enough electricity he believed he could communicate to the whole world at once – or distribute power wirelessly through the same mechanism.
He was also given to lavish over-exaggeration of his inventions. So, for instance, he developed the first radio controlled boat – an excellent invention. But he claimed that this would soon be extended to be able to act on its own, thinking for itself. He did not distinguish between remote control and AI-driven robots – a bizarre exaggeration.
Although the historical context is great, this book needs to be read carefully as Seifer frequently shows that he doesn’t understand the science Tesla was using (or claimed to be using). So, for example, Seifer refers to 25,000 volts being ‘[stepped] down to usable frequencies when they reached the exposition’, clearly confusing voltage and frequency. He tells us that ‘Electricity in its natural state is alternating,’ whatever that means. He tells us that John Herschel discovered Uranus (it was actually his father, William). Most remarkably, we hear that Tesla was capable of something that would shock modern physicists: ‘Tesla also appears to have come close to the idea of breaking up the electron into subatomic particles.’ It’s hard to know where to begin on how wrong that statement is.
Tesla was a fascinating, wonderful, wild character. But we need to distinguish his very real engineering genius from his scientific flights of fancy. This is the best of the book about him – but really we need a Tesla bio from someone who understand physics.

Paperback:  

Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Jim Baggott - Four Way Interview

Jim Baggott is a freelance science writer. He trained as a scientist, completing a doctorate in physical chemistry at Oxford in the early 80s, before embarking on post-doctoral research studies at Oxford and at Stanford University in California. He gave up a tenured lectureship at the University of Reading after five years in order to gain experience in the commercial world. He worked for Shell International Petroleum for 11 years before leaving to establish his own business consultancy and training practice. He writes about science, science history and philosophy in what spare time he can find. His books include Atomic: The First War of Physics and the Secret History of the Atom Bomb (2009), Higgs: The Invention and Discovery of the ‘God Particle’ (2012), Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields (2017), and, most recently, Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe (2018). For more info see: www…

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…