Skip to main content

Elegance in Science – Ian Glynn ***

Here we have a study of elegance, which author Ian Glynn explains is characteristic of the best science, and has the capacity to provide scientists with a great deal of pleasure and satisfaction. Although difficult to define exactly, elegance here has to do with a kind of simplicity or conciseness, a perhaps surprising ability to illuminate and explain, ingenuity, and creativity.
Throughout the book, Glynn takes some of the most successful theories, explanations and experiments in the history of science, with the aim of explaining the elegance in each. One of the longer sections, for instance, looks at Newton’s laws of motion and his theory of gravitation. The elegance of these taken together, the book explains, lay in the fact that, whilst being remarkably simple, they were able to account for an astonishing amount of phenomena, and provided a basis from which both Kepler’s laws of planetary motion and Galileo’s laws of freefall and projectile motion, discovered beforehand, could be derived. Elsewhere in the book, Glynn looks at the experiments that led us to better understand the nature of heat, light, electricity and DNA, among other things, and at the end of the book a brief chapter warns us that an elegant theory is not always a good theory.
I have mixed feelings about this book. What it does well is to put some of the significant advances in science, like Newton’s breakthroughs mentioned above, in historical context, and once seen as products of their time, many of the experiments and ideas explored in the book do appear incredibly elegant. It is useful in any case to appreciate the circumstances in which ideas are put forward and in which experiments are carried out. Similarly, the context and background given to Thomas Young’s experiments to investigate the nature of light, and to the familiar story of the uncertainty about whether light was a wave or a particle, is more than you get from most other places. Finally, on the good points, mixed in with the science there is a lot on the individuals involved, with very readable biographical sections.
It is disappointing, however, that the science is not always presented as accessibly as it could be. Take, for instance, the chapter entitled ‘How do nerves work?’ This looks in part at what Glynn considers to be probably the most beautiful experiment in biology, Alan Hodgkin’s proof of the local circuit theory of nerve conduction. The style of writing here is unfortunately a little too academic and the build up to the explanation of the experiment is too brief for the general reader. Overall, it’s partly a problem of consistency; the science at the beginning and end of the book is done very well, but in the middle it can be a challenge to understand in full.
I also found on a few occasions that the elegance Glynn tries to convey doesn’t come through. Instead, in these parts, the book is at best just as a summary of some of the most important episodes in science. Perhaps I was missing something quite subtle in these theories and experiments, and elegance is, of course, subjective and, as said above, difficult to pin down. Nevertheless, I wondered at times whether elegance was being attributed to ideas and experiments that were not so remarkable; in some parts better examples could have been chosen that illustrated Glynn’s point about the feeling of wonder and satisfaction you can get from elegant science.
I don’t want to focus too much on the negatives, though, and this is still a generally approachable book with a lot of material not found elsewhere.
Hardback:  
Review by Matt Chorley

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…