Skip to main content

Elegance in Science – Ian Glynn ***

Here we have a study of elegance, which author Ian Glynn explains is characteristic of the best science, and has the capacity to provide scientists with a great deal of pleasure and satisfaction. Although difficult to define exactly, elegance here has to do with a kind of simplicity or conciseness, a perhaps surprising ability to illuminate and explain, ingenuity, and creativity.
Throughout the book, Glynn takes some of the most successful theories, explanations and experiments in the history of science, with the aim of explaining the elegance in each. One of the longer sections, for instance, looks at Newton’s laws of motion and his theory of gravitation. The elegance of these taken together, the book explains, lay in the fact that, whilst being remarkably simple, they were able to account for an astonishing amount of phenomena, and provided a basis from which both Kepler’s laws of planetary motion and Galileo’s laws of freefall and projectile motion, discovered beforehand, could be derived. Elsewhere in the book, Glynn looks at the experiments that led us to better understand the nature of heat, light, electricity and DNA, among other things, and at the end of the book a brief chapter warns us that an elegant theory is not always a good theory.
I have mixed feelings about this book. What it does well is to put some of the significant advances in science, like Newton’s breakthroughs mentioned above, in historical context, and once seen as products of their time, many of the experiments and ideas explored in the book do appear incredibly elegant. It is useful in any case to appreciate the circumstances in which ideas are put forward and in which experiments are carried out. Similarly, the context and background given to Thomas Young’s experiments to investigate the nature of light, and to the familiar story of the uncertainty about whether light was a wave or a particle, is more than you get from most other places. Finally, on the good points, mixed in with the science there is a lot on the individuals involved, with very readable biographical sections.
It is disappointing, however, that the science is not always presented as accessibly as it could be. Take, for instance, the chapter entitled ‘How do nerves work?’ This looks in part at what Glynn considers to be probably the most beautiful experiment in biology, Alan Hodgkin’s proof of the local circuit theory of nerve conduction. The style of writing here is unfortunately a little too academic and the build up to the explanation of the experiment is too brief for the general reader. Overall, it’s partly a problem of consistency; the science at the beginning and end of the book is done very well, but in the middle it can be a challenge to understand in full.
I also found on a few occasions that the elegance Glynn tries to convey doesn’t come through. Instead, in these parts, the book is at best just as a summary of some of the most important episodes in science. Perhaps I was missing something quite subtle in these theories and experiments, and elegance is, of course, subjective and, as said above, difficult to pin down. Nevertheless, I wondered at times whether elegance was being attributed to ideas and experiments that were not so remarkable; in some parts better examples could have been chosen that illustrated Glynn’s point about the feeling of wonder and satisfaction you can get from elegant science.
I don’t want to focus too much on the negatives, though, and this is still a generally approachable book with a lot of material not found elsewhere.

Hardback:  
Using these links earns us commission at no cost to you
Review by Matt Chorley

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur