Skip to main content

Science and Islam: a history – Ehsan Masood ****

“Animals engage in a struggle for existence [and] for resources, to avoid being eaten and to breed…Environmental factors influence organisms to develop new characteristics to ensure survival, thus transforming into new species. Animals that survive to breed can pass on their successful characteristics to [their] offspring.”
Is this Richard Dawkins writing in the 21st Century? Or Lamarck in the 19th? Or some godless renegade in 17th Century Europe? Not even close. The author is al-Jahiz, a science writer from 9th Century Baghdad. The surprising thing is not that an Islamic author could write such a thing so early, but that we are surprised to learn that he could – that’s what Ehsan Masood would say, at any rate. And readers of Science and Islam will probably agree with him by end of this lively and user-friendly book on Islamic science during the so-called Dark Ages and beyond.
Part 1 of the book mixes a potted history of Islam with descriptions of the patrons, institutions and practitioners of science in each major regime from 700AD to 1300AD. The story is long but compactly told. In the space of four chapters and seven centuries, Islamic science flowers in Damascus, Baghdad, and Egypt before being cut down by the Mongols and Tartars. Along the way Masood sketches some of the many colourful figures of the time, like the bird-man ibn-Firnas and the scientific advisor who is unable to build a dam on the Nile and feigns madness to avoid the wrath of his caliph.
Part 2 hones in on the science of this “staggering renaissance.” Masood covers medicine, astronomy, mathematics, chemistry, and engineering, in that order, with a post-script on evolution, optics, and Islamic universities. When describing the heroes of Islamic science and their remarkable work, Masood keeps one eye on their Greek heritage and another on their European successors. Comparisons are odious, but illuminating: Islamic scientists are all the more impressive when we learn that they questioned Galen on medicine, challenged Ptolemy on cosmology, and made direct contributions to the work of Copernicus, Kepler, Fermat, Newton, and the engineers of the industrial revolution.
Part 3 looks at Islamic science in the 19th and early 20th century, and draws some lessons for the future. This is not just an epilogue. It asks what the scientific revolutionaries of the 17th Century thought about Islamic science, whether the Ottomans were wise to borrow from Western science in the 19th Century, and whether imperialist science was a good thing for India. These are all delicate questions with ambiguous answers, and Masood gives a balanced survey. To end, he picks up a thread that runs right through the book, the violence of pro-science Islamic rulers. “If science is to return to the nations of Islam,” Masood concludes, “it must do so without interfering with people’s freedom to believe.”
This conclusion is wrong if taken too literally. Surely a belief in evolution (for example) will interfere with a person’s freedom to believe that the earth was created 6000 years ago – and rightly so. Still, Masood does well to remind us that dictatorial rule does not help the cause of science, even if the dictator is pro-science. This book also reminds us of another easy-to-forget truth: for most of its history, Islamic science flourished alongside the teachings of Muhammad, not in spite of them – and sometimes, as for medicine, it flourished because of those teachings.
Science and Islam has some gaps. Sometimes Masood left me hanging after skipping past what seemed to be key achievements in Islamic science. One is the passage quoted at the top of this review, which summarises not just evolution but also a mechanism for evolution that resembles evolution by inherited characteristics; another is the controlled clinical trial conducted by the medic al-Razi to test the theory of bloodletting. Clinical trials and evolution are such monuments of modern science that I expected Masood to say more about their role in Islamic science. Also, Islamic science from 1300 to 1800 gets little attention – which is fine for such a small book, but Masood does not explain the omission.
Topics that require equations or diagrams are not well-covered. When it comes to Islamic optics Masood gives 4 pages to theories of sight – which are easy to describe qualitatively – and only 2 paragraphs to refraction, reflection, and other theories of how light travels. The chapter on number gives a good survey of Islamic mathematicians but is light on algebra, perhaps their most important contribution in this field. A diagram or two in the chapter on astronomy may have clarified concepts such as the “Tusi couple”, a mathematical tool for simplifying Ptolemy’s model of the heavens. However, in place of technical detail the book has up-to-date scholarship, an asset for understanding the Islamic influence on Copernicus, the water clocks of al-Jazari, and numerous other topics.
Science and Islam faces the dual challenge of covering a technical subject (science) and a neglected period of history (the East during the Dark Ages). The book is aimed at a general audience, the majority of which will be unfamiliar with one or both of these topics. Masood answers both challenges well. His smooth prose and bite-sized format are easy on the novice palate (there is a new sub-chapter every 2 pages or so). All but the most learned readers will come away with their image of both science and Islam refreshed.
Review by Michael Bycroft


Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…