Skip to main content

Is That a Big Number? - Andrew Elliott ***

This is a curious book, which has the very worthy intent of giving us more of a feel for numbers - so, as the author points out, it's not really about maths at all. It's more about statistics in the original meaning of a collection of numbers about a state, rather than the modern analytical sense of the word. Andrew Elliott approaches this problem with a very individual and amiable manner, giving all kinds of approaches, while throwing in little quizzes, tables of comparisons and more.

Broadly, Elliott divides our mechanisms for assessing numbers into five. The first is landmark numbers, which act as a known milestick - classic examples would be the approach often adopted by newspapers of measuring things in blue whales, football pitches or Eiffel Towers, though it's about far more than measuring height or volume. The second technique is visualisation - picturing the numbers in some sort of visual context. Thirdly he suggests dividing the number up into smaller parts, and fourthly bringing them down to size by using the as proportions or ratios. Finally he points out the value of logarithmic scales, even though these can result in misunderstanding some of the other measures.

What we get here is a real mix - some parts of the book are genuinely fun, others are, frankly, only of interest to a number fanatic. The biggest problem here is that, while there are genuinely interesting attempts to give experience of comparing or visualising numbers, the way the book meanders with little narrative structure makes it difficult to keep on top of what's happening. It's very scattergun, with a fair amount of the material that was hard to find interesting - such as lots of lists of comparisons of things where the numbers are vaguely similar. (For example, the time since the earliest known writing is about 25 x the time since the birth of Darwin. And we care why?)

There are little quizzes at the start of each section which ask, for example, which is the most numerous of Boeing 747s built up to 2016, the population of Falkland Islands, grains of sugar in a teaspoon and satellites in orbit in 2015. These are quite fun, though it's a pain looking up the answer in the back of the book. And that specific example (the first) also irritates as it involves comparing something with an exact value (number of satellites, say) with a wild approximation - we're told there are more satellites as there are 4080 satellites versus 4000 grains of sugar in a teaspoon - but I'm sure a 'teaspoon of sugar' is not accurate to the nearest 80 grains.

Perhaps less of an issue, but still slight odd, is that a few of the facts are impressively out of date. Elliott uses a definition of the metre that has been obsolete since 1983 and there's a section on the Richter scale that fails to mention that it has been little used since the 1970s (although they sometimes mislabel it, the earthquake scale used on the news is not the Richter scale).

Those, though, are minor issues. While there is a much better book to help the reader get a real feel for how numbers are misused and how to understand big numbers better in Blastland and Dilnot's The Tiger That Isn't, I still found Is That a Big Number? interesting and I'm glad I read it.

Hardback:  

Kindle:  


Review by Brian Clegg

Comments

Popular posts from this blog

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Mercury - William Sheehan ****

Driving to work one morning several years ago, I spotted a tiny white dot close to the rising sun. ‘That’s Venus,’ I said to myself. Almost immediately I saw another, much brighter dot a few degrees away. ‘No, that’s Venus – the first one must be, um ... Mercury.’ Even with a lifelong interest in astronomy, I always manage to forget Mercury.

With eight planets in the Solar System, one of them has to be the least interesting – and Mercury got the short straw. That’s a relative statement, though, and a diligent author could still dig up enough fascinating facts about that tiny dot by the Sun to fill a short book. William Sheehan has done a brilliant job of doing just that.

One of the reasons Mercury is so easy to forget is that it’s almost impossible to get a good view of it from Earth. Even after the invention of the telescope, which turned planets like Mars and Jupiter into explorable worlds, Mercury remained a mystery – and the subject of some pretty wild speculations. In 1686, for exa…