Skip to main content

Foolproof - Brian Hayes *****

The last time I enjoyed a popular maths book as much as this one was reading Martin Gardner’s Mathematical Puzzles and Diversions as a teenager. The trouble with a lot of ‘fun’ maths books is that they cover material that mathematicians consider fascinating, such as pairs of primes that are only two apart, which fail to raise much excitement in normal human beings. 

Here, all the articles have something a little more to them. So, even though Brian Hayes may be dealing with something fairly abstruse-sounding like the ratio of the volume of an n-dimensional hypersphere to the smallest hypercube that contains it, the article always has an interesting edge - in this case that although the ‘volume’ of the hypersphere grows up to the fifth dimension it gets smaller and smaller thereafter, becoming an almost undetectable part of the hypercube.

If that doesn’t grab you, many articles in this collection aren’t as abstruse, covering everything from random walks to a strange betting game. What's more, an extra delight for me is that Hayes throws in a lot of computing reflections, even including snippets of code as a way of explaining some processes. I particularly loved the exploration of pseudorandom and quasirandom numbers (not the same thing) and their implications for Monte Carlo methods.

The only times I felt Hayes loses it a bit is when he gets too heavily into research mode and gives us more detail than we need. For example, he digs into the origins of the story of the young Gauss adding up 1 to 100 almost instantaneously at school. His exploration of this mathematical legend is impressive, but he enumerates every possible source and route for the various versions of the legend to have originated, taking us to a level that feels unnecessarily complete. Similarly he lost me a bit when he tries to forensically examine why a Victorian mathematician who calculated pi to 707 places went wrong from the errors that he made in his calculations. But this kind of over-detailed analysis is rare.

I suspect the ideal reader is someone who has an aged physics, maths or computer science degree, who is still aware of (say) what Monte Carlo methods or eigenvalues are in a vague sense, but needs some gentle reminders. The essential, however, is to have a sense of wonder in discovery. For people like us it’s a brilliant book.


Hardback:  



Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…