Skip to main content

The Invention of Science - David Wootton *****

This is no lightweight book - both literally and metaphorically. It packs in nearly 600 pages of decidedly small print, and manages to assign about 10 per cent of these simply to deciding what is meant by a 'scientific revolution' (the subtitle is 'a new history of the scientific revolution'). While warning of the importance of being aware of the change in meaning of some terms, the author successfully demolishes the arguments of those who argue that terms like science, scientist and revolution can't be applied to the seventeenth century because they're anachronistic. (He doesn't say it, but this is a bit like saying you shouldn't call a dinosaur a dinosaur because the word wasn't in use when they were around.)
What's also very apparent in a section on history and philosophy of science is why so many scientists are dubious of philosophers and historians of science. When an adult can seriously suggest that we can't say that current science is better than that of the Romans - all we can say, suggest these philosophers and historians of science, is that our science is different - it makes it very clear that some academics have spent far too much time in ivory towers examining their philosophical navels and really haven't got a clue about the real world.
We then get into the main content of the gradual process of science, in the current sense of the word, coming into being. It's certainly interesting in a dry way to see this analytically dissected, though the slightly tedious nature of the exposition makes it clear why popular science has to simplify and concentrate on the narrative if readers are to be kept on track. I appreciate that an academic like David Wootton wants to ensure that every i is dotted and t crossed, but I think that all the arguments of this book could have been made in half the length by cutting back on some of the detail and repetition.
This book, then, is not popular science in the usual sense, but neither is it a textbook. If you are prepared to put the effort in, you will receive huge insights into what lies beneath: one view of the true history of science. That's why the book gets 5 stars. I've learned more about the history of science from this one book than any other five I can think of that I have read in the past. I have to emphasise that 'one view' part, though. History is - well, not an exact science. As far as I can see (I'm not equipped to criticise the content) this is a superbly well researched piece of scientific history, but in the end, the conclusions drawn are down to Wootton and he enjoys making it clear where he is strongly contradicting other historians of science.
There's a huge amount to appreciate here. Wootton convincingly demolishes Kuhn's idea that scientific revolutions require heavy disagreements among scientists, showing how exposure to experience (often thanks to new technology, such as the telescope) can swing the argument surprisingly painlessly. And he shows what a remarkable influence words have on the development of science (music to the ear of a writer). Perhaps most remarkable of all is Wootton's careful, very detailed exposition of the idea that the real trigger for 'modern' scientific thought was Columbus's discovery of America, which demolished the existing model of the Earth and made it possible to see how experience can triumph over the philosophical quagmire of authority.
If you've a fair amount of time to spare and really want to dig into the way that the scientific revolution came about, I would heartily recommend giving this title a try.


Paperback (US is Hardback):  

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Case Against Reality - Donald Hoffman ***

It's not exactly news that our perception of the world around us can be a misleading confection of the brain, rather than a precise picture of reality - everything from optical illusions to the apparent motion of video confirms this - but professor of cognitive science Donald Hoffman goes far beyond this. He wants us to believe that spacetime and the objects in it are not real: that they only exist when we perceive them. It's not that he believes everything to be totally illusory, but suggests that the whole framework of the physical world is a construction of our minds.

To ease us into this viewpoint, Hoffman gives the example of the Necker cube - the clever two-dimensional drawing apparently of a cube which can be seen in two totally different orientations. Calling these orientations 'Cube A and Cube B' he remarks that our changing perceptions suggest that 'neither Cube A nor Cube B is there when no one looks, and there is no objective cube that exists unobserve…

The Universe Speaks in Numbers - Graham Farmelo ****

Theoretical physics has taken something of a hammering lately with books such as Sabine Hossenfelder's Lost in Math. The suggestion from these earlier titles is that theoretical physics is so obsessed with mathematics that many theoretical physicists spend their careers working on theory that doesn't actually apply to the universe, because the maths is interesting. Even experimental physics can be tainted, as the driver for new expenditure in experiments, such as the proposed new collider at CERN, is not driven by discoveries but by these mathematically-directed theories. Graham Farmelo presents the opposite view here: that this speculative mathematical work is, in fact, a great success.
As I am very much in the Hossenfelder camp, I expected to find Farmelo's book rather irritating, as it's effectively a love letter to mathematically-obsessed theoretical physics - but in reality (an entertaining phrase, given the context) I found it both interesting and enjoyable. Far…