Skip to main content

The Quantum Universe: everything that can happen does happen – Brian Cox & Jeff Forshaw ****

Brian Cox has picked up a lot of fans (and a few parodies) for his light and fluffy ‘here’s me standing on top of a mountain looking at the stars’ TV science shows – no doubt a fair number of them will rush out and buy his latest collaboration with Jeff Forshaw. They will be disappointed. So, I suspect, will a number of My Little Pony fans, as with its rainbow cover and glittery lettering it only needs a pink pony tail bookmark to complete the look.
The reason The Quantum Universe will disappoint is not because it is a bad book. It’s brilliant. But it is to Cox’s TV show what the Texas Chainsaw Massacre is to Toy Story. It’s a different beast altogether.
As they did with their E=mc2 book, but even more so here, Cox and Forshaw take no prisoners and are prepared to delve deep into really hard-to-grasp aspects of quantum physics. This is the kind of gritty popular science writing that makes A Brief History of Time look like easy-peasy bedtime reading – so it really isn’t going to be for everyone, but for those who can keep going through a lot of hard mental work the rewards are great too.
More than anything, I wish this book had been available when I started my undergraduate course in physics. It would have been a superb primer to get the mind into the right way of thinking to deal with quantum physics. Using Feynman’s least action/sum over paths with ‘clocks’ representing phase, the authors take us into the basics of quantum physics, effectively deriving Heisenberg’s uncertainty principle from basic logic – wonderful.
They go on to describe electron orbitals, the mechanics of electronic devices, quantum electrodynamics, virtual particles in a vacuum and more with the same mix of heavy technical arguments, a little maths (though nowhere near as much as a physics textbook) and a lot of Feynman-style diagrams and logic.
The reason I think I would have benefited so much is that this book explains much more than an (certainly my) undergraduate course does. Not explaining why quantum physics does what it does – no one can do that. But explaining the powerful logic behind the science, laying the groundwork for the undergraduate to then be able to do the fancy maths and fling Hamiltonians around and such. It is very powerful in this respect and I would urge anyone about to start a physics degree (or in the early stages of one) to read it. I would also recommend it for someone who is just really interested in physics and is prepared to put a lot of work into reading it, probably revisiting some pages several times to get what Cox and Forshaw have in mind – because they don’t ease up very often.
What I can’t do, though, is recommend this as general popular science. It isn’t the kind of excellent introduction that gives you an understanding of what’s going on in quantum theory, a view of the mysteries and a broad understanding of what the topic is about. This book is just too hard core. I’d suggest that 90% plus of popular science readers shouldn’t touch it with the proverbial barge pole. If that sounds condescending, it isn’t meant to be. Good popular science can and does have a lot more content and thought provoking meat than a typical Brian Cox TV show – but this book goes so much further still than that, inevitably limiting its audience.

Paperback 

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …

The Best of R. A. Lafferty (SF) – R. A. Lafferty ****

Throughout my high school years (1973–76) I carefully kept a list of all the science fiction I read. I’ve just dug it out, and it contains no fewer than 1,291 entries – almost all short stories I found in various SF magazines and multi-author anthologies. Right on the first page, the sixth item is ‘Thus We Frustrate Charlemagne’ by R. A. Lafferty, and his name appears another 32 times before the end of the list. This isn’t a peculiarity of my own tastes. Short stories were much more popular in those days than they are today, and any serious SF fan would have encountered Lafferty – a prolific writer of short fiction – in the same places I did.

But times change, and this Gollancz Masterworks volume has a quote from the Guardian on the back describing Lafferty as ‘the most important science fiction writer you’ve never heard of’. Hopefully this newly assembled collection will go some way to remedying that situation. It contains 22 short stories, mostly dating from the 1960s and 70s, each w…

David Beerling - Four Way Interview

David Beerling is the Sorby Professor of Natural Sciences, and Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield. His book The Emerald Planet (OUP, 2007) formed the basis of a major 3-part BBC TV series ‘How to Grow a Planet’. His latest title is Making Eden.

Why science?

I come from a non-academic background. None of my family, past or present, went to university, which may explain the following. In the final year of my degree in biological sciences at the University of Wales, Cardiff (around 1986), we all participated in a field course in mid-Wales, and I experienced an epiphany. I was undertaking a small research project on the population dynamics of bullheads (Cotus gobio), a common small freshwater fish, with a charismatic distinguished professor, and Fellow of the Royal Society in London. Under his guidance, I discovered the process of learning how nature works through the application of the scientific method. It was the most exciting t…