Skip to main content

The God Effect – Brian Clegg *****

We are used to hearing about “Einstein’s greatest mistake” being his throwing in the cosmological constant to explain the expansion of the universe. These days this seems less of a mistake than it was first thought. But there’s one thing he definitely didn’t get right – that’s quantum entanglement, a concept so bizarre, that Einstein used it as an example of why quantum theory had to be wrong.
In fact it was Einstein who for once was mistaken, and entanglement has proved, as Brian Clegg’s subtitle suggests, to be one of science’s strangest phenomena. Imagine a link between two particles that is so low level that you can separate them to either side of the universe and a change in one particle will be instantly reflected in the other. Forget special relativity – the spooky connection of entanglement doesn’t know about the light speed barrier.
The God Effect (the title is a reference to the Higgs boson, also known as the God Particle, which it has been suggested requires entanglement to function) begins with an excellent background to where entanglement came from – Einstein’s original “entanglement busting” paper EPR, early attempts to show whether or not entanglement existed and the definitive experiments that demonstrated it in action. Although we’re dealing here with quantum physics at its most mindboggling, Clegg makes a great job of explaining what was going on in layman’s terms, and bringing alive the major characters not widely known outside this field, such as John Bell and Alain Aspect.
Where the book really triumphs, though, is when he moves onto the remarkable applications of entanglement that have started to be developed over the last few years. Unbreakable encryption, computers that can crack problems that would take conventional computers longer than the lifetime of the universe to cope with, even Star Trek-style matter transmitters. It’s great stuff. I particularly liked the chapter on why entanglement doesn’t allow us to send faster than light messages. Most of the books I’ve read on the subject just dismiss this as obvious, but it isn’t – in fact it’s what most people think of as soon as they hear about entanglement: surely it could be used to send faster than light messages. Clegg explains just what the implications would be – why faster than light messages would allow us to send information back in time – then shows how entanglement entices, but can never actually deliver on this promise.
There’s also some fun speculation from top scientists on what else entanglement could do – not just providing a mechanism for the Higgs boson, but also the existence of life, telepathy and more. The only criticism I have is that the chapter on quantum computers told me rather more than I wanted to know about different ways to make quantum computers work – it was still interesting, but I didn’t need that much detail.
Overall this is a superb exploration of this weird and wonderful physical phenomenon and the ways it could change our lives. It’s well written and approachable without any technical background, though I think it may also appeal to undergraduates, as entanglement tends to get very limited coverage on physics courses. Recommended.
Paperback:  
Review by Martin O'Brien

Comments

Popular posts from this blog

Rockets and Rayguns - Andrew May ****

The Cold War period saw dramatic developments in science and technology, coinciding with the flourishing of the science fiction genre. In Rockets and Rayguns, Andrew May draws on the parallels between reality and fiction, each influencing the other.

Inevitably a major Cold War theme was the threat of nuclear war, and May opens with the bomb. It's fascinating that fiction got there first - nuclear weapons were featured in science fiction when many physicists were still doubting the practicality of using nuclear energy. Of course, it's a lot easier to simply take a concept and dream up a weapon than it is to make it for real - for example, H. G. Wells' prophetic nuclear bombs from his 1914 The World Set Free were nothing like the real thing. And some science fiction devices concepts - notably ray guns and force fields - came to very little in reality. However this doesn't prevent the parallels being of interest.

May gives us a mix of the science - describing how nuclear we…

Galileo Galilei, the Tuscan Artist – Pietro Greco ****

Near the beginning of John Milton’s epic poem Paradise Lost, he refers to a ‘Tuscan artist’ viewing the Moon through an optic glass. He’s talking about Galileo – one of history’s greatest scientists, but not the most obvious person to slap an ‘artist’ label on. Yet Galileo lived at a time – the Renaissance – when it was fashionable to dabble impartially in both the arts and sciences. Look up ‘Renaissance man’ on Wikipedia and you’ll see Galileo’s picture right there underneath Leonardo da Vinci’s. It’s a less well-known side to his life, but it crops up again and again – interspersed among his many scientific achievements – in this excellent new biography by Pietro Greco.

If you’re looking for interesting trivia, you’ll find plenty in this book. Galileo’s father was a musician with scientific leanings, who carried out some of the first experiments on musical acoustics – which Galileo may have assisted with. As a young professor of mathematics, Galileo delivered a couple of lectures on …

Enjoy Our Universe - Alvaro de Rújula ***

I’m going to start this review with a longish quote from the author’s preface, for several reasons. It explains De Rújula’s purpose in writing the book, as well as the audience he’s trying to reach, while giving a taste of his idiosyncratic writing style (which he keeps up throughout the book). It’s also a good starting point for discussing the book’s strengths and weaknesses. Here’s the quote:

'This book is not intended for (very) young kids nor for physicists. It is intended for anyone – independently of the education (s)he suffered – who is interested in our basic current scientific understanding of the universe. By "universe" I mean everything observable from the largest object, the universe itself, to the smallest ones, the elementary particles that "function" as if they had no smaller parts. This is one more of many books on the subject. Why write yet another one? Because the attempts to understand our universe are indeed fun and I cannot resist the tempta…