Skip to main content

Seven Deadly Colours – Andrew Parker ****

Andrew Parker has a mission to show us how important the eye is. This is technically the second book of a trilogy. The first, In the Blink of an Eye portrayed the development of the eye as one of the significant driving factors of evolution, triggering (in Parker’s words) an arms race that continues today. In Seven Deadly Colours, Parker moves on to show the significance of colour in life forms and its relationship with the eye. (Actually he argues that objects don’t really have colour, it’s only eyes that define colour, but this is a little specious, as long as you consider colour to be a measure of the wavelengths of light emitted.)
To show how important colour is, he divides the book into seven major sections reflecting the colours of the rainbow (with the unnecessary indigo removed and ultra violet thrown in). Each section also features one particular creature, though there are plenty of diversions and inclusions, and each section details one particular way of producing colour, because, as Parker points out repeatedly at the start of the book, where artists are limited to one way of making a colour – pigments – animals are much more versatile.
It’s a truly fascinating voyage of discovery, beginning with the technically obvious, but still somehow shocking observation that, were it not for the eye, animals (and plants) would not have colouration other than the natural tendency to absorb certain energies of light that results in blood being red or chlorophyll being green. Nature’s rich canvas of decoration, camouflage and warning would never have evolved.
The reason the book works so well is in part the intriguing challenges Parker gives at the start of each chapter – what, for instance are the strange, blue glowing “spirits of the sea” seen off the Philippines, or why was a tree frog that hid against green leaves blue – and also because the natural world has such convoluted colour mechanisms. This is perhaps best illustrated in one of Parker’s asides, mentioning a leaf beetle that should stand out easily, because its green colouration is much brighter than a leaf, and directional. It remains camouflaged because its crinkly outer casing diffuses the green until it’s a near match for a leaf surface. Conversely, the book also works very well because it isn’t just about the colours out there, but the way different eyes react to those colours – whether it’s a kestrel’s extra cones to deal with ultraviolet, or the marine mammals that have lost a valuable blue receptor and can’t get it back.
All this is excellent. Parker knows his creatures and their colour mechanisms, he has an enjoyable turn of phrase and this is a truly fun read when he is dealing with the biology. But there is a problem, which accounts for the four star rating – on the biology alone, the book would get five stars.
Unfortunately, as well as covering the biology, Parker attempts to put alongside it the physical science and here he falls down quite badly, because his ideas of physics are firmly rooted in the 19th century. It’s as if a physicist, trying to write a crossover book between physics and biology relied on a pre-Darwinian view of the world – it just doesn’t work. This dated attitude comes through right at the start when Parker repeatedly tells us how limited we are because our artists only make colours using pigments. True in his Victorian world. But out here, Andrew, the visual arts most people spend most time watching don’t rely on pigments at all, but on cathode ray tubes, LCDs and plasma. It’s something called TV.
The same time warp applies to Parker’s description of light, which is solidly rooted in pre-20th century wave theory. This is despite the fact that most of the phenomena he describes concern the interaction of light and matter, an interaction that is only sensibly described using quantum electrodynamics. Parker even unconsciously emphasizes this. In his introduction he quite happily describes “how light works” only referring to waves. But the first time he ever mentions a biological mechanism using light he immediately refers to a photon. Unfortunately he hasn’t given any indication of what this is, or what it has to do with his descriptions of ripples in a piece of string. The weakness of the physics extends to getting one point absolutely wrong. Parker tells us that the reason the sky is blue is because “fine particles and water molecules in the Earth’s atmosphere reflect the blue rays in sunlight down to the Earth’s surface.” While this Tyndall scattering occurs, and explains the phenomenon in a frog that Parker is describing, it’s not why the sky is blue.
That the book gets a four star rating despite this major flaw is because the biological aspect is so excellent. The book is well worth reading. But those who know a bit of physics must grit their teeth, and those who don’t are probably best ignoring the physical asides.
Hardback:  
Review by Brian Clegg

Comments

Popular posts from this blog

The AI Delusion - Gary Smith *****

This is a very important little book ('little' isn't derogatory - it's just quite short and in a small format) - it gets to the heart of the problem with applying artificial intelligence techniques to large amounts of data and thinking that somehow this will result in wisdom.

Gary Smith as an economics professor who teaches statistics, understands numbers and, despite being a self-confessed computer addict, is well aware of the limitations of computer algorithms and big data. What he makes clear here is that we forget at our peril that computers do not understand the data that they process, and as a result are very susceptible to GIGO - garbage in, garbage out. Yet we are increasingly dependent on computer-made decisions coming out of black box algorithms which mine vast quantities of data to find correlations and use these to make predictions. What's wrong with this? We don't know how the algorithms are making their predictions - and the algorithms don't kn…

Infinity in the Palm of your Hand - Marcus Chown *****

A new Marcus Chown book is always a treat - and this is like a box of chocolates: a collection of bite-sized delights as Chown presents us with 50 science facts that are strange and wonderful.

The title is a quote from William Blake's Auguries of Innocence: 'To see a World in a Grain of Sand, / And a Heaven in a Wild Flower, / Hold Infinity in the palm of your hand, / And Eternity in an hour.' It would seem particularly appropriate if this book were read on a mobile phone (so it would be literally in the palm), which could well be true for ebook users, as the short essays make excellent reading for a commute, or at bedtime. I found them distinctly moreish - making it difficult to put the book down as I read just one more. And perhaps another. Oh, and that next one looks really interesting...

Each of the 50 pieces has a title and a short introductory heading, which mostly give a feel for the topic. The very first of these, however, briefly baffled me: 'You are a third mus…

How to Invent Everything - Ryan North ****

Occasionally you read a book and think 'I wish I'd thought of that.' This was my immediate reaction to Ryan North's How to Invent Everything. The central conceit manages to be both funny and inspiring as a framework for writing an 'everything you ever wanted to know about everything (and particularly science)' book.

What How to Invent Everything claims to be is a manual for users of a time machine (from some point in the future). Specifically it's a manual for dealing with the situation of the time machine going wrong and stranding the user in the past. At first it appears that it's going to tell you how to fix the broken time machine - but then admits this is impossible. Since you're stuck in the past, you might as well make the best of your surroundings, so the aim of the rest of the book is to give you the knowledge you need to build your own civilisation from scratch.

We start with a fun flow chart for working out just how far back in time you are…