Skip to main content

Jason Steffen - Five way interview

Jason Steffen is associate professor of physics at the University of Nevada, Las Vegas. A longtime science team member of NASA’s Kepler mission, he has contributed to the discovery and characterisation of thousands of planets that orbit distant stars. His new book is Hidden in the Heavens.

Why astronomy?

I originally wanted to be an aerospace engineer to design and build airplanes.  My undergraduate institution didn't have aerospace engineering:  I took an astronomy class my first quarter, and decided to major in physics.  My degrees are in physics rather than astronomy, but my research is all on topics related to astronomy in one way or another. 

For a period of time after graduate school I did experimental physics research on dark matter and dark energy.  I was working at a national laboratory, a big atom smasher outside of Chicago, called Fermilab.  At the same time that I was doing this work for Fermilab, I also worked for NASA on the Kepler mission to find exoplanets.  Half my salary came from one project, the other half from the other.  It was pretty intense, but I learned a lot.  Eventually, I decided that I needed to stick with one research area and chose to stick with exoplanets. 

Why this book?

For a long time I've been interested in writing a book.  I enjoy explaining the things that we've collectively learned and how we learned them.  It had been just over a decade since the original Kepler mission launched, so it was far enough in the past that we could give a decent assessment of what its significance was, but not so far in the past that everyone was retired or dead.  So, I still had access to my colleagues, as well as a copy of all of the emails that were shared among our working group.  It seemed that the time was right to tell the story of the mission.

We’ve now discovered thousands of exoplanets - are we still finding anything new and unexpected?

A lot of exoplanet science has moved on from discovering new systems (although that still happens).  Today, our advances often happen in characterizing the properties of those planets.  Measuring their masses, the composition of their atmospheres, the nature of the planetary system that they live within, the properties of the star that they orbit, etc.  We are learning a lot about how the sizes of different planets in a given system, and their orbits, relate to each other and what that implies for their histories, and the history of the solar system.

We also have instruments, like the James Webb Space Telescope, where we can see the different chemicals that are in the atmospheres of these planets.  That tells us about the conditions where they formed, and whether or not their surfaces might be conducive for life to exist.  Each day there are a dozen or so new papers that share new results, so there is still consistent progress in a number of areas.

What’s next?

 In exoplanets, there is ongoing work with the TESS mission (Transiting Exoplanet Survey Satellite).  That is discovering new systems on a regular basis.  There are also plans to launch the PLATO mission, which is a successor to Kepler, this time led by the European Space Agency.  Another satellite, the Nancy Grace Roman Telescope, led by NASA will be able to detect a lot of planets across our galaxy that we currently don't have the capability to see.  So, the field of exoplanets is not slowing down any time soon.

What’s exciting you at the moment?

My current research is looking at the chemical composition of the planets themselves, not their atmospheres, but their interiors.  Planets form in a disk of material that orbits the newborn star.  As that disk cools, different minerals condense and rain down to the disk midplane where they ultimately form the building blocks of planets.  My group models the condensation of those different minerals so that we can predict what the planets will be made of.

My group also developed computer software that models the internal structure of planets given their composition.  So, we can take the output of our predictions for the composition of the planets, and then turn it into real planets using this other software.  (We called the software MAGRATHEA, after the planet in the Hitchhiker's Guide to the Galaxy where planets are made to order.)  Ultimately, we are trying to predict the details of what exoplanets are like, and the conditions under which they formed.

Photograph (c) Robert Royer III

These articles will always be free - but if you'd like to support my online work, consider buying a virtual coffee:
Interview by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free here

Comments

Popular posts from this blog

The Language of Mathematics - Raúl Rojas ***

One of the biggest developments in the history of maths was moving from describing relationships and functions with words to using symbols. This interesting little book traces the origins of a whole range of symbols from those familiar to all, to the more obscure squiggles used in logic and elsewhere. On the whole Raúl Rojas does a good job of filling in some historical detail, if in what is generally a fairly dry fashion. We get to trace what was often a bumpy path as different symbols were employed (particularly, for example, for division and multiplication, where several still remain in use), but usually, gradually, standards were adopted. This feels better as a reference, to dip into if you want to find out about a specific symbol, rather than an interesting end to end read. Rojas tells us the sections are designed to be read in any order, which means that there is some overlap of text - it feels more like a collection of short essays or blog posts that he couldn't be bothered ...

The Decline and Fall of the Human Empire - Henry Gee ****

In his last book, Henry Gee impressed with his A (Very) Short History of Life on Earth - this time he zooms in on one very specific aspect of life on Earth - humans - and gives us not just a history, but a prediction of the future - our extinction. The book starts with an entertaining prologue, to an extent bemoaning our obsession with dinosaurs, a story that leads, inexorably towards extinction. This is a fate, Gee points out, that will occur for every species, including our own. We then cover three potential stages of the rise and fall of humanity (the book's title is purposely modelled on Gibbon) - Rise, Fall and Escape. Gee's speciality is palaeontology and in the first section he takes us back to explore as much as we can know from the extremely patchy fossil record of the origins of the human family, the genus Homo and the eventual dominance of Homo sapiens , pushing out any remaining members of other closely related species. As we move onto the Fall section, Gee gives ...

Target Earth – Govert Schilling *****

I was biased in favour of this great little book even before I started to read it, simply because it’s so short. I’m sure that a lot of people who buy popular science books just want an overview and taster of a subject that’s brand new to them – and that’s likely to work best if the author keeps it short and to the point. Of course, you may want to dig deeper in areas that really interest you, but that’s what Google is for. That basic principle aside, I’m still in awe at how much substance Govert Schilling has managed to cram into this tiny book. It’s essentially about all the things (natural things, I mean, not UFOs or space junk) that can end up on Earth after coming down from outer space. That ranges from the microscopically small particles of cosmic dust that accumulate in our gutters, all the way up to the ten kilometre wide asteroid that wiped out the dinosaurs. Between these extremes are two topics that we’ve reviewed entire books about recently: meteorites ( The Meteorite Hunt...