Skip to main content

The Dance of Life - Magdalena Zernicka-Goetz and Roger Highfield ****

There is without doubt a fascination for all of us - even those who can find biology a touch tedious - with the way that a tiny cellular blob develops into the hugely complex thing that is a living organism, especially a human. In this unusual book which I can only describe as a memoir of science, Magalena Zernicka-Goetz, assisted by the Science Museum's Roger Highfield, tells the story of her own career and discoveries.

At the heart of the book, and Zernicka-Goetz's work, is symmetry breaking, a topic very familiar to readers of popular physics titles, but perhaps less so in popular biology. The first real breakthrough from her lab was the discovery of the way that a mouse egg's first division was already asymmetrical - the two new cells were not identical, not equally likely to become embryo and support structure as had always been thought.  As the book progresses, throughout the process of development we see how different symmetries are broken, with a particular focus on mammals, producing the different structures we see in a living organism.

We also read a fair amount on chimeras, where cells from different organisms can be combined (causing some dramatic newspaper headlines) and why they are valuable for research, with important and balanced discussion of the ethical limits of human embryo research, plus some fascinating material on effectively creating artificial embryoids. Part of the appeal here is the way that the authors portray the slow and not always steady progress - sometimes under significant attack from opposing scientists - that typifies real science, as opposed to the simplistic picture we often get, particularly from the way what we're taught at school simply delivers the end results without following the way the ideas and experiments have developed through a lot of grunt work.

Although the book is very well written, as someone from a physics background I do find the sheer quantity of things that have to be named a struggle. When I tell people physics is vastly simpler than biology, most non-scientists are non-plussed, but in physics, almost everything matter does can be dealt with using just three particles and two forces. Here, in one page alone, the authors feel the need to tell me about methylation, argenine residues, histones, trophectoderms, CARM1, H3, SOX2, NANOG and pluripotency transcription factors  - and that's by no means an unusual page.

Despite this, though, there was no doubt the book is fascinating. The only reason I've not given it five stars is that I'm not a fan of memoirs. It's not that I want a science book to be impersonal, and I appreciated some insights into Zernicka-Goetz's background (there were interesting parallels in her ingenuity arising from initially doing science under the limitations of working in 1980s Poland with Andre Geim's novel approach based on his early experience in Russia that led to the development of graphene) - but there was far too much autobiographical material for me. I appreciate a lot of readers love this, but I found it got in the way a little. (It was also weird, reading a book with two authors, written in the first person singular.) 

Ultimately, though, this remains a truly remarkable story and a book that deserves a place on any serious science bookshelf.

Hardback:     
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that â€˜Galileo discovered the counterintuitive law behind a swinging o...

Ctrl+Alt+Chaos - Joe Tidy ****

Anyone like me with a background in programming is likely to be fascinated (if horrified) by books that present stories of hacking and other destructive work mostly by young males, some of whom have remarkable abilities with code, but use it for unpleasant purposes. I remember reading Clifford Stoll's 1990 book The Cuckoo's Egg about the first ever network worm (the 1988 ARPANet worm, which accidentally did more damage than was intended) - the book is so engraved in my mind I could still remember who the author was decades later. This is very much in the same vein,  but brings the story into the true internet age. Joe Tidy gives us real insights into the often-teen hacking gangs, many with members from the US and UK, who have caused online chaos and real harm. These attacks seem to have mostly started as pranks, but have moved into financial extortion and attempts to destroy others' lives through doxing, swatting (sending false messages to the police resulting in a SWAT te...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...