Skip to main content

17 Equations that Changed the World [In Pursuit of the Unknown] – Ian Stewart ***

There’s been a trend for a couple of years in popular science to produce ‘n greatest ideas’ type books, the written equivalent of those interminable ’50 best musicals’ or ‘100 favourite comedy moments’ or whatever shows that certain TV companies churn out. Now it has come to popular maths in the form of Ian Stewart’s 17 Equations that Changed the World.
Stewart is a prolific writer – according to the accompanying bumf he has authored more than 80 books, which is quite an oeuvre. That can’t be bad. He is also a professional mathematician – a maths professor – and that potentially is a problem. The trouble is that, much more so than science, mathematicians are not ordinary people. They get excited about things that really don’t get other people thrilled. And it takes an exceptional mathematician to be able to communicate that enthusiasm without boring the pants off you. It’s notable that the most successful maths populariser ever, Martin Gardner, wasn’t a mathematician.
So how does Ian Stewart do here? Middling well, I’d say. The equations he provides us with are wonderful, fundamental ones that even someone with an interest in science alone, who only sees maths as a means to an end, can see are fascinating. In most cases he throws in quite a lot of back story, historical context to get us interested. So the meat of the book is excellent. But all too often there comes a point in trying to explain the actual equation where he either loses the reader because he is simplifying something to the extent that the explanation isn’t an explanation, or because it’s hard to get excited about it, unless you are a mathematician.
The section on the Schrodinger equation, for example, is presented in such a way that it’s almost impossible to understand what he’s on about, throwing around terms like the Hamiltonian and eigenfunctions without ever giving enough information to follow the description of what is happening. (I also always get really irritated with knot theory, as the first thing mathematicians do is say ‘Let’s join the ends up.’ No, that’s not a knot any more, it’s a twisted or tangled loop. A knot has to be in a piece of string (or rope, or whatever) with free ends.)
Inevitably, to give the book real world interest, many of the equations are from science, and Stewart proves, if anything, better at getting across the science than he is the maths (probably because it is easier to grasp the point). The only section I’d argue a little with is the one on entropy, where he repeatedly says that entropy always increases or stays the same, where it’s more accurate to say that statistically it is very, very likely to do so. But there is always a small chance that purely randomly, say a mixture of gas molecules will partly unmix. (He also uses an unnecessarily complex argument to put down the creationist argument that uses entropy to argue for divine intervention, as it’s easiest to explain that you aren’t dealing with a closed system, something he doesn’t cover.)
Overall, then, I am not sure who will benefit from this book. There’s not enough detail to interest people studying maths or physics at university, but it becomes too obscure in a number of places for the general reader. A good attempt, but would have benefited from having a co-author who isn’t a mathematician and who could say ‘Sorry, Ian, I don’t get that. Let’s do it differently.’ Bring back Simplicio. (One for the Galileo fans.)

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. When I bought a second hand copy the first section I read was a formula not an equation. My first thought was that the formula looked wrong and it was - the standard deviation was inside a square root. Re-prints also reprint this error and the publisher didn't acknowledge my e-mail. Perhaps too embarrassed?

    ReplyDelete

Post a Comment

Popular posts from this blog

We Are Eating the Earth - Michael Grunwald *****

If I'm honest, I assumed this would be another 'oh dear, we're horrible people who are terrible to the environment', worthily dull title - so I was surprised to be gripped from early on. The subject of the first chunk of the book is one man, Tim Searchinger's fight to take on the bizarrely unscientific assumption that held sway that making ethanol from corn, or burning wood chips instead of coal, was good for the environment. The problem with this fallacy, which seemed to have taken in the US governments, the EU, the UK and more was the assumption that (apart from carbon emitted in production) using these 'grown' fuels was carbon neutral, because the carbon came out of the air. The trouble is, this totally ignores that using land to grow fuel means either displacing land used to grow food, or displacing land that had trees, grass or other growing stuff on it. The outcome is that when we use 'E10' petrol (with 10% ethanol), or electricity produced by ...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...