Skip to main content

Authors - L

A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z

Anna Lachowska (with Apoorva Khare)

R. A. Lafferty

Alex Lamb

Nick Lane

Philippa Lang

Charles Langmuir (with Wally Broecker)

Mark Lasbury

Robert Laughlin

J. L. Lawrence

Eric Lax

Cathy Lazere (with Dennis Shasha)

James Le Fanu

Ursula Le Guin

Tom Lean

Leon Lederman (with Christopher Hill)

Leon Lederman (with Dick Teresi)

Jonah Lehrer

Fritz Leiber

Michael Lemonick

Armand Leroi

Nigel Lesmoir-Gordon (with Will Rood and Ralph Edney)

Richard Lester

Hector Levesque

Mark Levi

Frank Levin

Janna Levin

Yasha Levine

Steven Levitt (with Stephen Dubner)

Tim Lewens

Mark Leyner (with Billy Goldberg)

Thomas Lin

David Linden

Martin Lindstrom

Chris Lintott

Chris Lintott (with Patrick Moore, Brian May)

Lewis Little

David Livingston

Mario Livio

Charles Lockwood

William Bryant Logan

Mun Keat Looi (with Colin Stuart)

Jonathan Losos

Rosaly Lopes (with Michael Carroll)

David Love

Catherine Loveday

James Lovelock

Pete Lunn

Mark Lynas

Comments

Popular posts from this blog

Math Without Numbers - Milo Beckman *****

In some ways, this is the best book about pure mathematics for the general reader that I've ever seen.  At first sight, Milo Beckman's assertion that 'the only numbers in this book are the page numbers' seems like one of those testing limits some authors place on themselves, such as Roberto Trotter's interesting attempt to explain cosmology using only the 1,000 most common words in the English language, The Edge of the Sky . But in practice, Beckman's conceit is truly liberating. Dropping numbers enables him to present maths (I can't help but wince a bit at the 'math' in the title) in a far more comprehensible way. Counting and geometry may have been the historical origin of mathematics, but it has moved on. The book is divided into three primary sections - topology, analysis and algebra, plus a rather earnest dialogue on foundations of mathematics exploring the implications of Gödel's incompleteness theorems, and a closing section on modelling (

Linda Schweizer - Four Way Interview

Linda Schweizer earned an MA in mathematics and a PhD in astronomy at UC Berkeley, with the visual arts and dance as her other passions. She observed southern-hemisphere galaxy pairs with several telescopes in cold dark domes in Chile, then modelled, analyzed, and published her work in 1987. Those papers on the statistical and dynamical modelling of dark matter in binary galaxy halos were, she says, just a small stone in the mosaic of our growing understanding of dark matter. A Carnegie Fellowship in Washington, DC, was her first science job. By then, she had her second daughter in the oven— with two more daughters to follow, and she turned her focus to properly preparing them for life. After 15 years, she returned to the world of astrophysics. After a brief stint in External Affairs, she taught science writing to undergraduate students at Caltech and loved it. She was a Visiting Scholar at Caltech while researching Cosmic Odyssey , an insider’s history of one of the greatest eras in a

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m