Skip to main content

Magdalena Zernicka-Goetz - Four Way Interview

Photo by John Cairns
Magdalena Zernicka-Goetz is Professor of Mammalian Development and Stem Cell Biology at the University of Cambridge, and Bren Professor in Biology and Bioengineering at Caltech. She has published over 150 papers and book chapters in top scientific journals and her work on embryos won the people’s vote for scientific breakthrough of the year in Science magazine. Her new book, co-authored with Roger Highfield, is The Dance of Life: symmetry, cells and how we become human.

Why science?

I fell in love with biology when I was a child because I loved doing experiments and seeing what happened. It was fascinating and enormous fun. I also fell in love with art at the same time. Art and science are both based on experiments and uncovering new paths to understand the world and ourselves. Why do we think the way we think? Where do our feelings come from? Is the 'right' answer always right? Where do we come from? How do parts of our body communicate with each other?  What is the nature of time? How do our cells measure time? Can I understand it?

I was raised in a laboratory so everyone around me was doing an experiment and asking questions.  But my passion for art is more difficult to track. It might have something to do with how I was dyslexic and yet wanted to communicate with people around me and so I started to express myself intuitively through art – mainly through abstract art and design. 

Science and art are both imaginative and creative. They allow me to find the miraculous in everyday life.

Why this book?

There are many excellent popular science books. Roger Highfield and I wanted The Dance of Life to be different and to cover not only the science of how our life starts and how we build ourselves but also to be a human story, my story.  We wanted our book to be an intimate and personal account of scientific discovery.  We wanted it to talk about conflicting thoughts – devotion but also sacrifice in pursuit of science; friendship but also competition, which both dominate scientific life.  We also wanted to show the joy of discovery. 

It was a challenge to write this book as we wrote it together – a man and a woman with different life experiences, with different schedules, with our brains working differently but we both share a passion for science, life and truth.  We were talking about some of the most complex and deepest feelings in my life and, at the same time, the most profound topics in biology, from the life of an embryo to stem cell research and the nature of our own origins. We wanted to explore what we currently understand and the limits of that understanding. We wanted to be honest in showing the life of a woman in science and the life of an immigrant. I was both and it nearly broke me at times. 

What’s next?

Recently I restarted my life. I moved my scientific and personal family from Cambridge (UK) to California. This last year has already been an amazing new challenge and experience. I hope some enlightenment will come from this new chapter along with the pure joy of discovery. 

I would consider writing a second book to expand on some of the ideas in The Dance of Life to show that we should be more open and prepared to contra polarizing views about science and woman especially in science. To me, science and art are about openness, creativity, a deep way of thinking and joy that brings happiness. 

What’s exciting you at the moment?

My research on combining biology with engineering.  Creating embryo models from stem cells – building synthetic embryos one cell at a time - and learning answers to all of the questions that have puzzled me since I was a little girl.

In LA, new collaborations allow me to bring new techniques in microscopy and imaging to let us see stem cells on their complex journey in embryo development, creating beautiful images that blend art with science.  Roger and I had always planned to bring even more art into The Dance of Life

Every week brings a new discovery in science. If you look into the last issue of journal Nature, you can see an image from our latest paper, on an amazing mechanism that embryos develop in the second week of their life. To allow them to grow, they make holes in a membrane ‘corset‘ that originally holds them tight. How ingenious! It is great time to write about breaking boundaries, just as embryos do. 



Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur