Skip to main content

No Shadow of a Doubt - Daniel Kennefick ***

It's something of a truism that science tends to go through stages, where each new stage can be typified as 'It's more complicated than we thought.' This book demonstrates that this assertion is also true of history of science. It examines the 1919 eclipse expeditions and their conclusions used to bolster Einstein's general theory of relativity, and how those results have been treated.

This is a very tightly focussed subject for a whole book, and there is a distinct danger here of the material of an article being stretched out to book length - it often did feel that Daniel Kennefick was dragging out a handful of conclusions by repeating the same assertions over and over in subtly different ways. However, this isn't entirely fair as he does give exhaustive detail of the two expeditions which wouldn't have fit in an article, covering how their results were produced and how the controversy (if it could really be called that) arose.

Like many physics professors, Kennefick struggles to explain the details of physics in a way that's accessible to the general reader, but this is only a very small part of the book, which is far more about the history and its implications, and here he is significantly more readable. Though the points may be made rather too often, they are indeed fascinating if you are interested in the way experimental support for scientific theories - and the history of science - develops.

Arguably, as Kennefick points out, eclipse science is an oddball field, as it's very difficult to repeat experiments successfully, particularly as there is only a few-minute window in which to undertake them. This is the context in which we see the developing story of the 1919 eclipse expeditions. From their results being announced through to the 1970s they were generally presented as a triumphant demonstration of Einstein's prediction of the amount the mass of the Sun should warp space, causing stars appearing near it in the sky to be shifted in position. From the seventies onwards - and it's largely how I've seen it presented - it was more seen as a bit of a fudge by English astrophysicist Arthur Eddington, taking results which couldn't really demonstrate anything and making them show what he wanted: that Einstein was correct. Kennefick demonstrates at length that this view is also wildly over-simplistic.

One reason for this is that the myth of Eddington's bias omits the fact that he was only responsible for one of the two expeditions - the other was under the aegis of the Astronomer Royal Frank Dyson (apparently no relation to, but an inspiration for Freeman Dyson). Dyson had no axe to grind and was responsible for the decision, usually blamed on Eddington, of ignoring the data that disagreed with Einstein's predictions. Dyson did this not to cherry pick, but because there were technical problems with the device used that produced these photographic plates, making them difficult to interpret. (Apparently Eddington's only influence was to stop Dyson using the dubious data averaged with the other rather overshot data of Dyson's, which would have brought the results closer to the Einstein prediction.)

Interestingly, and again not revealed in the myth, the remaining 1919 plates were re-measured in the 70s and in fact showed that the ignored data, if measured properly, would also have confirmed the general theory's predictions.

Of course it's entirely possible that Eddington was biassed anyway and was over-confident about the way the results were presented - but  after reading this book, this early effort to test Einstein's theory (which would be verified many times over later by far better tests than the always tricky observation of eclipses) does not seem as flawed as it has repeatedly been presented to be.

An interesting book, then - but it does rather labour the point.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re