Skip to main content

Making Eden - David Beerling ****

I'll be honest up front - I found parts of Making Eden hard work to read. But the effort was more than rewarded. David Beerling makes a good case that botany is unfairly seen as the Cinderella of biology - it simply doesn't get the same attention as the animal side. I realised how true this was when I saw a diagram of a 'timeline of evolution of life on Earth' the other day. Out of about 30 entries, arguably three of them applied to plants. And yet, as Beerling makes clear, without plant life, the land would still be barren and the seas far less varied. No plants - no animals.

As someone with a very limited background in biology, I learned a lot here. The sophistication of some plant mechanisms are remarkable. Beerling dedicates a chapter, for example, to what he describes as 'gas valves', the stomata that open and close on the underside of leaves, allowing carbon dioxide in. The apparent downside is that they let moisture out - but as Beerling describes this is what allows, for example, trees to lift water up through their trunks in what are kind of upside-down fountains. It makes remarkable reading.

Similarly, I was fascinated by the discussion of a special kind of evolutionary jump that could have been responsible for major changes in evolutionary development, rather than natural selection as a result of the impact of individual mutations. In these jumps, whole genomes were duplicated, allowing one set of genes to carry on their jobs, while the copies could change, taking on different roles, before the two genomes merged back together. (There is apparently still some uncertainty about this, but Beerling tells us that 'evidence is mounting'.) And there was plenty more on where plants came from in the first place, deducing the role of ancient genes, the interaction between plants and symbiotic fungi, the contributions plants have made over history to climate change and the environmental crisis we currently face. I loved the suggestion that one contribution to mitigating growing carbon dioxide levels could be to give crops access to crushed basalt, which would encourage the plants to capture and store more of the carbon than usual.

Some of these chapters (such as the climate change and environmental ones) were straight forward, readable popular science. I found with some of the others I had to do a little light skipping when Beerling got too technical or delved into unnecessary detail. In the genetic-based chapters, this came across in the abundance of technical terms. I was reminded of Richard Feynman's infamous remark in Surely You Are Joking, Mr Feynman when naming cat muscles during a talk and the other students told him they knew all that. 'Oh, you do? Then no wonder I can catch up with you so fast after you've had four years of biology. They had wasted all their time memorising stuff like that, when it could be looked up in fifteen minutes.'

Picking a page at random in the Genomes Decoded chapter, I find at least 10 technical terms, some of which are mentioned here, but then never used again. It just makes the brain rattle a little. In other parts, Beerling describes in elegant detail how a particular distinction about a fossilised plant could be deduced - but there is so much detail I found my eyes drifting onwards to move things on a little.

Don't get me wrong - I am really glad I read this book. I have learned a lot and many parts were simply fascinating. I just wouldn't want to give the impression it's an easy read, where instead it takes some work, but rewards the reader richly.

Using these links earns us commission at no cost to you
Review by Brian Clegg


Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Uncertainty - Kostas Kampourakis and Kevin McCain ***

This is intended as a follow-on to Stuart Firestein's two books, the excellent Ignorance and its sequel, Failure, which cut through some of the myths about the nature of science and how it's not so much about facts as about what we don't know and how we search for explanations. The authors of Uncertainty do pretty much what they set out to do in explaining the significance of uncertainty and why it can make it difficult to present scientific findings to the public, who expect black-and-white facts, not grey probabilities, which can seem to some like dithering.

However, I didn't get on awfully well with the book. A minor issue was the size - it was just too physically small to hold comfortably, which was irritating. More significantly, it felt like a magazine article that was inflated to make a book. There really was only one essential point made over and over again, with a handful of repeated examples. I want something more from a book - more context and depth - that …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 

An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …