Skip to main content

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.

This information and its processing gives life its emergent complexity, which is why, Davies suggests, Dawkins-style reductionism to the gene level entirely misses the point. What's more, the biological setup provides a particularly sophisticated relationship between information and the physical aspects of the organism because the information can modify itself - it's as if a computer program could redesign itself as it went along.

The subtitle 'how hidden webs of information are solving the mystery of life' probably over-promises. As Davies makes clear, we still have no idea how life came into being in the first place. However, by bringing in this physical/information aspect we at least can get a better grip on the workings of the molecular machines inside organisms and how biology can do so much with so little. Here's where the demon in the title comes in. This is Maxwell's demon, the hypothetical miniature being dreamed up by the great nineteenth century Scottish physicist.

Maxwell's demon has the remarkable ability to tweak the second law of thermodynamics allowing, for example, heat to flow from a colder to a hotter body or, to put it another way, providing a mechanism for entropy (the measure of disorder in a system) to spontaneously decrease. Entropy has a strong (negative) relationship with information and Davies shows how miniature biological systems act in a demon-like fashion to effectively manage information.

There's lots to like here, from the best explanation I've seen of the relationship of information and entropy to fascinating coverage of how far we’ve gone beyond the selfish gene. This is not just about basic epigenetic processes (operating outside of genes, switching them on and off and so on) but how, for example, the electric field of a (biological) cell apparently has a role to play in ‘sculpting‘ the physical structure of an organism.

My only real complaint is that in part of the chapter Enter the Demon dealing with information engines and most of the chapter The Logic of Life, describing the relationship between living organisms and computation, Davies fails to put across clearly just what is going on. I read it, but didn't feel I gained as much information (ironically) as I needed from it. There was also one very odd statistic. We're told the information in a strand of DNA contains 'about 2 billion bits - more than the information contained in all the books in the Library of Congress.' There are about 32 million books in the Library of Congress, so that gives us on average 62.5 bits per book. Unless those are very short books, some information has gone astray.

Really interesting, then, from a transformed understanding of the importance of information in living organisms through to Davies' speculation on whether biological systems need new physical laws to describe them. But expect to come away feeling you need to read it again to be sure what it said.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. Nick lane argues in his book The Vital Question that biological systems are not really working to decrease entropy they exist because they essentially dont violate the second law of thermodynamics . I wonder how that reconciles with the theory here

    ReplyDelete
  2. I find it difficult to follow some of this stuff. Not the fluffy conceptual models, but the simple aspergers stuff.

    eg p95, text describing Fig 11, says 'barred lines [indicate inhibition]'. Then seems to use a different term - 'loopy broken arrows' to denote self inhibition. Change of term is confusing but not fatal.

    But Fig 11 contains no broken or barred loopy arrows, only solid ones, thus indicating self activation, not self inhibition. Again, I guess, not fatal, if the reader is expected to be alert for errors or misprints.

    But table 2, P96 shows that in at least 2 cases, the loop is self suppression, so the loop should be broken or barred. Still not quite fatal.

    But then, following Table 2 and Fig 11 together, node G suddenly gets activated in step 8, although in Fig 11 there is no 'incoming [activation] arrow' pointing at it, except for it's own self activation loop, which can never be initiated.

    So what's going on? AFAIK just errors, which I'd hope not to have been included in this book.

    So, how do we read this book? Perhaps best just to gloss over all the clever diagrams & tables, say 'Gee, Whizz, that's all amazing!'

    OTOH if I'm really not understanding a perfectly valid exposition, I'd love to know.

    ReplyDelete

Post a Comment

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur