Skip to main content

The Order of Time - Carlo Rovelli ***

There's good news and bad news. The good news is that The Order of Time does what A Brief History of Time seemed to promise but didn't cover: it attempts to explore what time itself is. The bad news is that Carlo Rovelli does this in such a flowery and hand-waving fashion that, though the reader may get a brief feeling that they understand what he's writing about, any understanding rapidly disappears like the scent of a passing flower (the style is catching).

It doesn't help either that the book is in translation so some scientific terms are mangled, or that Rovelli has a habit of self-contradiction. Time and again (pun intended) he tells us time doesn't exist, then makes use of it. For example, at one point within a page of telling us of time's absence Rovelli writes of events that have duration and a 'when' - both meaningless terms without time. At one point he speaks of a world without time, elsewhere he says 'Time and space are real phenomena.' The difficulty I think Rovelli faces is that he uses the common physicist's approach of talking of a model as if it were reality. 

The wofflyness often gets in the way of understanding. For example, when talking about the second law of thermodynamics and entropy, he claims (I think - it's difficult to tell exactly what he is claiming) that the only reason we perceive the arrow of time from the increase of entropy is the way we label things. The implication is that, for example, the atoms in your body are no more ordered than the atoms in a scrambled mess - it's just that it's easier to see the order in your body because on the scale of atoms everything is blurred, but if we could see every atom exactly, whatever configuration they would be in would itself be unique. It sounds impressive, but skips over the way that fundamental quantum particles are indistinguishable. The arrangement of the cloud of atoms is only unique if you can tell one hydrogen atom (say) from another.

This is rather a shame, as Rovelli covers a considerable amount in what is a distinctly short book (though, thankfully, you get more for your money than in Seven Brief Lessons). Amongst other things, Rovelli passingly covers the special and general theories of relativity, thermodynamics and, of course, loop quantum gravity. And it's particularly frustrating because his attempt to put across the idea that it’s better to model reality in terms of events rather than things is a very powerful one which isn't often seen in popular science - but the message could easily be lost in the confusion. You come away with very little information - far more that rapidly disappearing odour.

I've no doubt this book should do well for those who are impressed that a physicist can refer to Proust. But I like a popular science book with significantly more meat in it, rather than vague impressions.

Hardback:  

Kindle:  


Review by Brian Clegg

Comments

  1. I read his earlier 7 Brief Lessons in Physics, and concluded that he creates the impression of explaining without the reality

    ReplyDelete

Post a Comment

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Future of Fusion Energy - Jason Parisi and Justin Ball ***

There is no doubt that fusion, the power source of the Sun, has the potential to be a significant contributor to our future energy needs. It's clean, green and continuous, able to fill in the gaps where wind and solar simply can't deliver. It uses cheap fuel and doesn't produce much in the way of nasty waste. And it can't undergo any sort of runaway reaction. So it's certainly a worthy topic for a popular science title. This book covers one aspect of fusion power - tokamak reactors - in great depth for a relatively non-technical book. But as we will see, it will only really work for a limited audience.

You won't necessarily realise it from the cover, which I interpreted as emphasising that Homer Simpson will still have a job when Springfield Energy converts to fusion power, but Jason Parisi and Justin Ball have packed The Future of Fusion Energy with information on the detail of how fusion reactors work, and all the difficulties that are faced in getting a stabl…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…