Skip to main content

Feature - Don't put your money in perpetual motion, Mrs Worthington

Apparent perpetual motion machine on the cover
of a 1920 issue of Popular Science magazine
(image from Wikipedia)
Physicists dismiss perpetual motion machines and 'free energy' devices out of hand. Some consider this a lack of open-mindedness, but in reality it's just that the physicists understand the second law of thermodynamics.

The second law is often stated as 'in a closed system, heat moves from a hot to a cold body' (there's another definition using entropy, we'll come onto in a moment). That's the basis at some point in the chain of every way we source energy, from a clean, green wind turbine to a dirty diesel. And, for that matter, it applies to the way your body uses energy too. Such is the respect for the second law that one of the UK's top astrophysicists of the first half of the twentieth century, Arthur Eddington, wrote:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations [James Clerk’s masterpiece that describe how electromagnetism works] – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation – well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in the deepest humiliation.

So there has been some excitement in the press since a paper from last November pointed out a circumstance where the second law appears to be broken. (It ought to be pointed out that the paper appears on the pre-print server arXiv, so has not been peer reviewed. I'm not saying there's anything wrong with it, just needs noting.)

Of itself, there's nothing odd about heat moving from a colder to a hotter body. It's what a fridge does, after all. But this can only happen if energy is supplied to make it happen - this is what the 'closed system' bit of the definition precludes. What was interesting in the  described experiment is that heat was transferred spontaneously from 'colder' to 'hotter'. (I'll come back to those inverted commas soon), which is what you need for perpetual motion and free energy.

What physicist Roberto Serra of the Federal University of ABC in Santo AndrĂ©, Brazil and the University of York, with his colleagues, did was to get molecules of chloroform - a simple organic compound where a carbon atom has one hydrogen and three chlorine atoms attached - into a special state. The hydrogen atom and the carbon atom in a molecule had one of their properties - spin - correlated, giving them a kind of linkage. The hydrogen atom was in a higher energy state than the carbon, making the hydrogen technically hotter. And without outside help, as the correlation decayed, heat was transferred from the carbon to the hydrogen. From colder to hotter.

To understand why this happened requires the alternative definition of the second law involving entropy. Entropy is a measure of the disorder in a system. The more entropy, the more disorder. And the second law can be stated as the entropy in a closed system will either stay the same or increase. If the entropy decreases it's like heat going from cold to hot.

Entropy is measured by the number of different ways the components of a system can be organised. So, for example, a book has much lower entropy than a version with all the words in a random scrambled form. There are far more ways to arrange the words randomly than to form the specific book. (Imagine dropping the words randomly on a page - they are far more likely not to be in the order in the book.) This is why the second law also says it's more likely to break something than to unbreak it.

In the case of the chloroform experiment, entropy decreases because there are more ways to arrange the quantum states when they are correlated than when the correlation goes away - it's a bit like there being more ways to throw a six with two dice together than with two dice individually.

But free energy enthusiasts don't need to get too excited. Although there does appear to have been a spontaneous reduction in entropy, getting the molecules into the right state to start with would have taken far more energy than could be extracted. It's not a free source of energy.

The moral still is - don't buy a perpetual motion machine.



Comments

  1. I'm puzzled. If the transition from correlated to uncorrelated occurs spontaneously, does it release energy? If so, that energy will warm the environment and increase its temperature. If not, why does it happen?

    I remain confident that any claim to have demonstrated a spontaneous decrease in the total entropy of the universe will be refuted on closer analysis.

    ReplyDelete
    Replies
    1. As I mention at the end, there's inevitably lots of energy required to get things into the right state, so the universe is just fine.

      Delete

Post a Comment

Popular posts from this blog

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …

Six Impossible Things - John Gribbin *****

On first handling John Gribbin's book, it's impossible not to think of Carlo Rovelli's Seven Brief Lessons in Physics - both are very slim, elegant hardbacks with a numbered set of items within - yet Six Impossible Things is a far, far better book than its predecessor. Where Seven Brief Lessons uses purple prose and vagueness in what feels like a scientific taster menu, Gribbin gives us a feast of precision and clarity, with a phenomenal amount of information for such a compact space. It's a TARDIS of popular science books, and I loved it.

Like rather a lot of titles lately (notably Philip Ball's excellent Beyond Weird), what Gribbin is taking on is not the detail of quantum physics itself - although he does manage to get across its essence in two 'fits' (named after the sections of Hunting of the Snark - Gribbin includes Lewis Carroll's epic poem in his recommended reading, though it's such a shame that the superb version annotated by Martin Gardi…

Elizabeth Bear - Four Way Interview

Elizabeth Bear won the John W. Campbell award for Best New Writer in 2005 and has since published 15 novels and numerous short stories. She writes in both the SF and fantasy genres and has won critical acclaim in both. She has won the Hugo Award more than once. She lives in Massachusetts. Her latest title is Ancestral Night.

Why science fiction?

I've been a science fiction fan my entire life, and I feel like SF is the ideal framework for stories about humanity and how we can be better at it. Not just cautionary tales - though there's certainly also value in cautionary tales - but stories with some hope built in that we might, in fact, mature as a species and take some responsibility for things like reflexive bigotry and hate crimes (as I'm writing this, the heartbreaking news about the terrorist attack on Muslim worshipers in Christchurch is everywhere) and global climate destabilization. These are not intractable problems, but we need, as a species, the will to see that we …