Skip to main content

Gravitational Waves - Brian Clegg ****

The message of this book is summed up in its subtitle: 'How Einstein’s spacetime ripples reveal the secrets of the universe.' Gravitational waves really do reveal secrets – astronomical phenomena that can’t be observed any other way. The Einstein connection comes via general relativity – his alternative to Newton’s theory of gravity which is, notoriously, almost indistinguishable from it for most practical purposes. There are a few situations where the two theories make slightly different predictions, and in these cases general relativity comes out on top. When the Laser Interferometer Gravitational Wave Observatory (LIGO) reported the detection of gravitational waves in February 2016, most journalists treated it as just another of these academic “ticks in the box” for Einstein.

That’s underselling one of the most exciting breakthroughs in modern science – and this book aims to put the record straight. According to Brian Clegg, the LIGO announcement 'signalled the beginning of the biggest change to astronomy since the introduction of telescopes.' I’m not sure I’d go quite that far – the radio astronomy revolution of the 20th century was probably bigger – but gravitational waves may end up a close second. In principle they offer a means of directly observing hitherto purely theoretical concepts – from black holes and dark matter to the Big Bang itself.

When that first LIGO detection occurred, it wasn’t just a sharp spike above the noise background that people assumed had to be a gravitational wave (which is how I’d pictured it, based on media reports, before I read this book). It was a structured signal that, brief though it was, contained a huge amount of meaningful information. When properly interpreted, it told researchers not just  that the signal came from the merger of two black holes, but that they were located about 1.4 billion light years away, and had masses approximately 36 and 29 times that of the Sun. That’s not just 'confirming a theory' – it’s doing proper observational astronomy.

This is relatively short book, but it covers most of what an interested, non-specialist reader is going to want to know. It succinctly explains what gravitational waves are, how their existence was predicted, and methods by which they might be detected. It describes the design and construction of LIGO, the detections that have been made with it, and their physical interpretation. And there’s a substantial concluding chapter on what the future holds for gravitational wave astronomy.

With such a tightly packed book, it’s inevitable that some topics get covered in depth at the expense of others. For my taste, there was rather too much about the statistical analysis of the data to remove false alarms, and not enough about actually interpreting the data in terms of the astrophysical processes that produced it. But issues like that aren’t really a problem now that we have the internet. If you finish a book and your head is buzzing with unanswered questions, at least you know what to type into a Google search.



Review by Andrew May
Please note, this title is written by the editor of the Popular Science website. Our review is still an honest opinion – and we could hardly omit the book – but do want to make the connection clear.


Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 

An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …