Skip to main content

De/Cipher - Mark Frary ****

I was a little doubtful when I first saw this book. Although it has the intriguing tagline 'The greatest codes ever invented and how to crack them' the combination of a small format hardback and gratuitous illustrations made me suspect it would be a lightweight, minimal content, Janet and John approach to codes and ciphers. Thankfully, in reality Mark Frary manages to pack a remarkable amount of content into De/Cipher's slim form.

Not only do we get some history on and instructions to use a whole range of ciphers, there are engaging little articles on historical codebreakers and useful guidance on techniques to break the simpler ciphers. The broadly historical structure takes the reader through basic alphabetic manipulation, keys, electronic cryptography, one time pads and so on, all the way up to modern public key encryption and a short section on quantum cryptography. 

We even get articles on some of the best known unsolved ciphers, such as the Dorabella and the Voynich manuscript. (One of the few parts that is disappointing is the Voynich section, as the author seems heavily influenced by the Bax interpretation and doesn't give any weight to the perfectly reasonable idea that it's a fake, merely saying 'others who have failed to decode the manuscript merely believe it is a hoax.') 

You have to have some interest in cryptography to get the most out of this book. Unlike  Simon Singh's Code Book, which takes a more narrative approach, this title is a whole collection of different cipher techniques, each as a separate little article. However, if you do have that interest, this is a delightful little book because it adds in so many different cipher techniques. It would be both an ideal introduction to ciphers to a mathematically minded teenager and a good way to expand your knowledge if you're an adult who sees the fun to be had from ciphers, but doesn't know much detail. 


Hardback:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re