Skip to main content

Ripples in Spacetime - Govert Schilling ***

The only example of Govert Schilling's work I'd come across was his co-authorship of the quirky but ultimately unsatisfying Tweeting the Universe, so it was interesting to see a 'proper' book by him on the timely topic of gravitational waves.

I struggled a little with his writing style - it's very jerky, jumping from one topic to another in a kind of popular science stream of consciousness, but once I got used to it, there is no doubt that he gives a thorough non-technical picture not only of gravitational waves themselves, but all kinds of background material from Einstein's biography to aspects of general relativity that really don't have much to do with gravitational waves. In a sense this a curse of the topic - because gravitational wave astronomy is so new (at the time of writing fewer than 4 confirmed observations) there's a limit to how much there is to write about.

What Schilling does well is the science explanation. His description of gravitational waves themselves is the best I've seen anywhere, and he gives us plenty of information on the process that led to LIGO (the observatories that have made the discoveries). He's also good on the way the availability of gravitational wave data has the potential to expand the abilities of astronomers.

Less satisfactory is the history of science. I know popular science author John Gribbin would be squirming at the repeated use of 'Einstein's theory of general relativity' (it should be general theory of relativity), but this, for me, was a lesser error than some of the historical misinformation. We're told that Aristotle proposed the 'first model of the universe' - but there were plenty around earlier, such as Anaximander's, predating Aristotle by around 150 years. Equally we're told that 'Lipperhey' invented the telescope. Leaving aside his name being Lippershey, we know for certain he didn't as he attempted to patent it and failed because of prior claims (not to mention the Digges's work in the UK etc.) And, bizarrely, Schilling tells us that Einstein got the idea of a fixed speed for light from Michelson-Morley, rather than Maxwell.

Luckily there's only a relatively small part of the book that is history of science and, as mentioned, the parts explaining the science are much better. The description of Weber bars, the building of LIGO and the battles involved along the way are told much more engagingly in Black Hole Blues, but if it's just the science parts you want, this is a good one to go for.

Hardback:  

Kindle:  



Review by Brian Clegg

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …