Skip to main content

A Mind at Play - Jimmy Soni and Rob Goodman ****

If you are familiar with the history of computing, there are a few names that you'll know well enough biographically to turn them into real people. Babbage and Lovelace, Turing and von Neumann, Gates and Jobs. But there's one of the greats who may conjure up nothing more than a name - Claude Shannon. If Jimmy Soni and Rob Goodman get this right, we're going to get to know him a lot better - and get a grip on his information theory, which sounds simple in principle, but can be difficult to get your head around.

If you haven't heard of Claude Shannon, you ought to have. He was responsible for two key parts of the theoretical foundations that lie beneath the computing and internet technology most of use everyday. Arguably, without Shannon's theory, for example, it would be impossible to slump down in front of Netflix and watch a video on demand.

I suspect one reason that Shannon's work is less familiar than it should be is that it lies buried deep in the ICT architecture. I was primarily a programmer for a number of years, but as someone writing applications - programs for people to use - I didn't have to give any thought to Shannon's theories. They were embodied by engineers at a lower level than I ever needed to access. In fact, I'm ashamed to say that when I was programming, though I could give you chapter and verse on Bill Gates, I'd never heard of Shannon, even though he was still alive back then.

What Soni and Goodman do really well is to give us a feel for Shannon, the man. The writing has an impressive ability to put is into the home town of Claude Shannon, or the corridors of Bell Labs as he rides his unicycle along them. At first glance, Shannon might seem quite similar to Richard Feynman in his combination of playfulness with amazing insight. But it soon becomes clear that Shannon was a far less likeable character - more introverted, dismissive of those he considered an intellectual inferior and with no real interest in helping his country in the war or with codebreaking, more undertaking this if and only if he could be offered something he found mentally stimulating. Soni and Goodman seem to find his obsession with juggling, unicycles and building strange contraptions endearing, but I'm not sure that's really how it come across.

I am giving this book four stars for the biographical side, which works very well, but there are some issues. One is hyperbole - there is no doubt that Shannon was a genius and made a huge contribution to our understanding of information, but we really don't need to be told how incredible he was quite as often as this book does. At one point he is compared with Einstein - with Einstein arguably coming across as the less significant of the two - this seems to miss that part of Einstein's genius was the breadth of his work from statistical mechanics through relativity to quantum physics. While Shannon's personal interests were broad, his important work lacked that range.

The bigger issue was that I had hoped for a scientific biography, but I only really got a biography with a bit of science thrown in. The coverage of Shannon's information theory was (ironically) rarely very informative. I would have loved to have had the same level of exploration of the theory as we get of the person - but it's just not there. Of course, the theory isn't ignored, with a few pages given to each of the two big breakthroughs - but there could have been a whole lot more to make what can be a difficult concept more accessible.

I ought to stress that using the term hyperbole should not in any sense reduce the importance of Shannon's work. Hearing of Shannon's initial inspiration that logic and electrical circuitry were equivalent comes across rather like Darwin (and Wallace)'s inspiration on evolution by natural selection. It appears blindingly obvious, once you are told about it, but it took a long time for anyone to do so - and it's hugely important. Shannon's second big step, which provides a generalised model for information transmission with noise and makes the whole understanding of information communication mathematical was inspirational and up there with Turing's universal computer. What's more, it has applications well outside the IT world in the way it provides a link between information and entropy. If there were a maths Nobel prize, as Soni and Goodman suggest, Shannon definitely should have won one.

This is a man we needed to find out more about - and we certainly do. I just wish there had been more detail of the science in there too.

Hardback:  

Audio CD:  

Review by Brian Clegg

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Make, Think, Imagine - John Browne ***

When you read a politician's memoirs you know that, nine times out of ten, it won't really quite work, because the message can't carry a whole book. It's reminiscent of the old literary agent's cry of 'Is it a book, or is it an article?' It's not that there aren't a lot of words in such tomes. It's almost obligatory for these books to be quite chunky. But it's a fair amount of work getting through them, and you don't feel entirely satisfied afterwards. Unfortunately, that's rather how John Browne (former head of oil giant BP)'s book comes across.

It's not that the central thread is unimportant. It used to be the case, certainly in the UK, that science, with its roots in philosophy and the pursuit of knowledge, was considered far loftier than engineering, growing out of mechanical work and the pursuit of profit. There is, perhaps, still a whiff of this around in some circles - so Browne's message that engineering has been…

Bloom - Ruth Kassinger ***

There is much fascinating material in this chunky book by Ruth Kassinger. It may be my total ignorance of biology and everyone else knows these things, but I learnt so much - for example that seaweed is algae and not a plant, about algae's role in the development of land plants, about the algae in lichen and its contribution to coral reefs.

The book is divided into four broad sections: on the origins and development of algae, on algae (and particularly seaweed) as food, on making use of algae, for example, for biofuel, and on algae and climate change, particularly the bleaching of coral and algal blooms. This is all done in a very approachable writing style, mixing descriptive material that is never over-technical with narrative often featuring visits to different locations and to talk to a range of experts from those who study to algae to those who cook them.

There are two problems though. Firstly, the book is too long at 380 pages. Each section could do with a trim, but this wa…