Skip to main content

Why Icebergs Float - Andrew Morris ***

It is challenging to find a new way to present science to the general public, and I have to start off by congratulating Andrew Morris on his novel approach of exploring the science of everyday things by following the random flow of topics at a discussion group. To an extent this isn't new - Galileo, for example, made his science books more accessible by using an ancient approach of constructing a fake discussion between three individuals: the supporter of the status quo, the supporter of new ideas and the everyman to go 'Duh,' I don't understand this' (think Dr Who companion) giving the others a chance to explain.

Although Morris's discussion group is genuine, there is still something of a flavour of Galileo's approach coming through, especially as Morris admits that what he presents is edited to fit the desired approach. Nonetheless, the idea is genuinely attractive and novel. However, there is always a danger with novelty - that it wears off pretty quickly and I did find that the 'rambling conversation in a bar' approach made it quite easy to get lost and rapidly became a little irritating. It was interesting that the chapter on the significance of models in science, which opens with much less input from the discussion group, was a lot more coherent than the rest.

Another problem with that discussion group approach is that there is a danger of leaving huge gaps in the content because something doesn't happen to be brought up. So, for instance, the theme of the first chapter is 'Foods we love and hate'. That's a nice idea, but it only covered taste and smell where, for instance, many food dislikes are driven by texture. Even so, despite the scattergun approach, Morris is able to cover a whole host of topics from the nature of colour and pigments (from an observation about old masters losing colour) to the nature of electricity via the role of hormones, the whole business of bacteria, viruses and antibiotics and several chapters on energy, which when you start to think about it is rather a puzzling concept. There's no doubt that a reader will get plenty to get their teeth into as they go through this book.

One concern was that, perhaps due to the very general and informal nature of the discussions, some of the science was a little iffy. So, for example, the old myth that different areas of the tongue are associated with different taste sensations was regurgitated as if it were fact. The description of the mechanism of the tides fell down on the tide at the far side of the Earth from the Moon. And there is a fundamentally incorrect description of why objects appear to be a particular colour, making it sound as if all non-absorbed light is somehow magically reflected. Let's be clear: if a photon isn't absorbed by a material it will pass through. The question is whether or not and it what direction it is re-emitted.

A final moan is that a sampler book like this should always give the reader a good range of options to read further. Here there was a very limited and vague 'further resources' section at the end, which seemed like a pinned-on afterthought. It would have been much better if each chapter provided a handful of book suggestions to read further on the topics that chapter covered, should the appetite have been whetted.

So, what we have here is an innovative idea which doesn't quite come off. This isn't a bad thing. If we are going to be innovative, then it's necessary to take risks and not everything will succeed. And for that the author and publisher should be applauded. But in this particular case, it doesn't work for me.


Paperback:  

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

The Case Against Reality - Donald Hoffman ***

It's not exactly news that our perception of the world around us can be a misleading confection of the brain, rather than a precise picture of reality - everything from optical illusions to the apparent motion of video confirms this - but professor of cognitive science Donald Hoffman goes far beyond this. He wants us to believe that spacetime and the objects in it are not real: that they only exist when we perceive them. It's not that he believes everything to be totally illusory, but suggests that the whole framework of the physical world is a construction of our minds.

To ease us into this viewpoint, Hoffman gives the example of the Necker cube - the clever two-dimensional drawing apparently of a cube which can be seen in two totally different orientations. Calling these orientations 'Cube A and Cube B' he remarks that our changing perceptions suggest that 'neither Cube A nor Cube B is there when no one looks, and there is no objective cube that exists unobserve…

The Universe Speaks in Numbers - Graham Farmelo ****

Theoretical physics has taken something of a hammering lately with books such as Sabine Hossenfelder's Lost in Math. The suggestion from these earlier titles is that theoretical physics is so obsessed with mathematics that many theoretical physicists spend their careers working on theory that doesn't actually apply to the universe, because the maths is interesting. Even experimental physics can be tainted, as the driver for new expenditure in experiments, such as the proposed new collider at CERN, is not driven by discoveries but by these mathematically-directed theories. Graham Farmelo presents the opposite view here: that this speculative mathematical work is, in fact, a great success.
As I am very much in the Hossenfelder camp, I expected to find Farmelo's book rather irritating, as it's effectively a love letter to mathematically-obsessed theoretical physics - but in reality (an entertaining phrase, given the context) I found it both interesting and enjoyable. Far…