Skip to main content

Science: a history in 100 experiments - John and Mary Gribbin ***

What you might call list books - 100 best this, 50 ideas on that - are not my favourite reading (in my experience they tend to be things publishers like because they get lots of translations), but anything John and Mary Gribbin are involved in is bound to have good written content, and that is true here.

Unlike some such books, where the illustrations dominate, here there is a good mix between the text, which isn't constrained to be an exact two-page spread, and the images. Though the text is never overwhelmed, those images are often excellent and this is a classy enough production to have good quality colour photographs (though this is reflected in the price).

Along the way through our 100 experiments, we see some of the best of the best. (There are actually 101, explained as being like the US 'Physics 101' type courses, but more likely added afterwards to encompass the LIGO gravitational wave experiment.) It is remarkable to see both the crudeness of some early experiments that achieved so much, and the effort and thinking that has gone in to the ways that we have opened up knowledge on the universe, the Earth, biology, matter and more. The Gribbins aren't unnecessarily fussy about what counts as an experiment, which is excellent, so include, for example, the invention of the steam engine and the fascinating folly that was the almost unusable giant telescope, the Leviathan of Parsonstown.

We discover the way that very small ideas can spark a wider scientific endeavour - for instance Kekulé's self-eating snake dream, leading to an understanding of the benzene ring, so important to organic chemistry. And how sometimes it is the absence of something that makes the difference, such as when the ability to create a near-vacuum led to more understanding of subatomic particles and the development of electronics. Usually in the history of science we see a neat (if humanly flawed) chronological procession. By taking us from Archimedes in his bath to the satellites mapping the cosmic microwave background radiation we get a better understanding of the breadth of scientific endeavour.

Infrequently, the need to condense an experiment and its implications into a brief article can result in compaction that comes close to being misleading. For instance, in Newton's famous experiments on light we are told that in the second part of the experiment a second prism 'combined the seven colours back into a single spot of white light.' In reality, while Newton did use a second prism this way, he doesn't mention its effect on colour, only shape. His actual 'Experimentum Crucis' used two boards to separate off a small section of the spectrum and the second prism was used to show that different colours bent at different angles. Where Newton did actually make something of recombining the colours, he used a lens, rather than a prism. Similarly the entry on masers and lasers only details the maser work, not even naming the person who created the (far more useful) first laser or the person who had the patent on it.

Even so, the vast majority of the entries remain informative and concise. I'm only left with my usual bafflement with this kind of book as to what they are for. Only scientific stamp collectors are going to want to read through end to end (I admit to skimming through and dipping in to read the articles that caught my eye for various reasons). There's not the satisfaction of a narrative-based read that comes in a good popular science book. My suspicion is that apart from the translation opportunities, the main target may be libraries - the book is expensive for a personal buy, but I can imagine it being popular in both public and school libraries. So it remains part of a category I don't really understand as a reader... but it undoubtedly should win 'best in class'.

Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re