Skip to main content

Science: a history in 100 experiments - John and Mary Gribbin ***

What you might call list books - 100 best this, 50 ideas on that - are not my favourite reading (in my experience they tend to be things publishers like because they get lots of translations), but anything John and Mary Gribbin are involved in is bound to have good written content, and that is true here.

Unlike some such books, where the illustrations dominate, here there is a good mix between the text, which isn't constrained to be an exact two-page spread, and the images. Though the text is never overwhelmed, those images are often excellent and this is a classy enough production to have good quality colour photographs (though this is reflected in the price).

Along the way through our 100 experiments, we see some of the best of the best. (There are actually 101, explained as being like the US 'Physics 101' type courses, but more likely added afterwards to encompass the LIGO gravitational wave experiment.) It is remarkable to see both the crudeness of some early experiments that achieved so much, and the effort and thinking that has gone in to the ways that we have opened up knowledge on the universe, the Earth, biology, matter and more. The Gribbins aren't unnecessarily fussy about what counts as an experiment, which is excellent, so include, for example, the invention of the steam engine and the fascinating folly that was the almost unusable giant telescope, the Leviathan of Parsonstown.

We discover the way that very small ideas can spark a wider scientific endeavour - for instance KekulĂ©'s self-eating snake dream, leading to an understanding of the benzene ring, so important to organic chemistry. And how sometimes it is the absence of something that makes the difference, such as when the ability to create a near-vacuum led to more understanding of subatomic particles and the development of electronics. Usually in the history of science we see a neat (if humanly flawed) chronological procession. By taking us from Archimedes in his bath to the satellites mapping the cosmic microwave background radiation we get a better understanding of the breadth of scientific endeavour.

Infrequently, the need to condense an experiment and its implications into a brief article can result in compaction that comes close to being misleading. For instance, in Newton's famous experiments on light we are told that in the second part of the experiment a second prism 'combined the seven colours back into a single spot of white light.' In reality, while Newton did use a second prism this way, he doesn't mention its effect on colour, only shape. His actual 'Experimentum Crucis' used two boards to separate off a small section of the spectrum and the second prism was used to show that different colours bent at different angles. Where Newton did actually make something of recombining the colours, he used a lens, rather than a prism. Similarly the entry on masers and lasers only details the maser work, not even naming the person who created the (far more useful) first laser or the person who had the patent on it.

Even so, the vast majority of the entries remain informative and concise. I'm only left with my usual bafflement with this kind of book as to what they are for. Only scientific stamp collectors are going to want to read through end to end (I admit to skimming through and dipping in to read the articles that caught my eye for various reasons). There's not the satisfaction of a narrative-based read that comes in a good popular science book. My suspicion is that apart from the translation opportunities, the main target may be libraries - the book is expensive for a personal buy, but I can imagine it being popular in both public and school libraries. So it remains part of a category I don't really understand as a reader... but it undoubtedly should win 'best in class'.

Hardback:  

Kindle 

Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…