Skip to main content

Calculating the Cosmos - Ian Stewart ***

This is a weird one - it's a book where I'm really struggling to identify who it's for and what it is supposed to do. The only conclusion I can draw is that Calculating the Cosmos is intended for people who like Ian Stewart's excellent maths books, but who don't usually read popular science books, so need a maths-driven introduction to astronomy, astrophysics and cosmology.
The particularly odd thing is that despite the subtitle 'how mathematics unveils the universe' there is very little explicit maths in the book - it's mostly just straightforward physics with little prominence given to the mathematical side. And the physics is put across in a fairly heavy handed 'fact, fact, fact...' way - the book is light on narrative throughout. Where it does stray into history there are one or two examples that don't quite get the story straight - for instance, when talking about Newton's development of his gravitational work, Stewart tells us that it took a 'stroke of genius' to see that the Moon is both falling and moving sideways so it misses. What he doesn't point out was that the genius in question was Robert Hooke, not Isaac Newton. This is one of the few points where Newton explicitly says the idea had not occurred to him until Hooke wrote to him about it.
Where the book does stand out is where Stewart delves into something that is usually glossed over in a popular science book. Sometimes this content feels a touch 'so what?' - for example in describing the method used to simulate the formation of the Moon - but in other cases, for example the analysis of how comet 67P got its 'rubber duck' shape, the route of the Rosetta probe, and in probably the best explanation of curved spacetime and manifolds I've seen. Best of all, Stewart explains how dark matter could not exist at all, simply being a matter of making the wrong assumptions in combining the interactions of stars in a galaxy and the way he eloquently dissects the many worlds hypothesis (many of the best bits are towards the end of the book). However, these are standout moments amongst a whole collection of information we've seen so many times before, and when he does explain the science, the approach taken is often not easy to grasp - for example his impenetrable use of Penrose diagrams in talking about black holes.
The story of the Rosetta probe is probably the closest we come to having some narrative to engage us, but even here the storytelling is bland, and, from a mathematical standpoint, we miss the opportunity to look at a different kinds of mathematical involvement, as there was interesting work done on the scheduling of Rosetta's experiments to deal with the very limited communications bandwidth.
This isn't a bad book, but apart from those handful of highlights where something is explained better than elsewhere, most of it fails to bring in anything new and lacks the engaging writing style of, say, Stewart's books written with Terry Pratchett. Here Stewart rarely makes use of mathematical insights to tell us anything different to straightforward familiar astronomy and cosmology, which is a shame as he is so excellent at making maths interesting. For the science, though, we get this distinctly 'here's a fact, here's another fact, here's yet another fact' style of writing. It might work as a book for that maths-based space newcomer, but I'm afraid its not for me.


Hardback 

Kindle 
Review by Brian Clegg

Comments

  1. There are so many glowing reviews of this book that I was beginning to think it was me that was weird for being somewhat unimpressed. I think very much the same as you, it's not up to his usual standard.He repeatedly remarks that the way the cosmos behaves is all about mathematics. It isn't, it's all abour physics - mathematics is the language the physics and the phenomena that occur. It is irritatingly ironic that he studiously avoids even quite simple mathematical reasoning that would shed light on what he is writing abou, like the way reasonances act to clear spaces within the Saturnain ring system. It seems he doesn't want to put the general readership off by including any math .... and then he introduces mathematical terms, such secular terms, that don't mean anything to someone who doesn't have some math background.

    ReplyDelete
  2. There are so many glowing reviews of this book that I was beginning to think it was me that was weird for being somewhat unimpressed. I think very much the same as you, it's not up to his usual standard.He repeatedly remarks that the way the cosmos behaves is all about mathematics. It isn't, it's all abour physics - mathematics is the language the physics and the phenomena that occur. It is irritatingly ironic that he studiously avoids even quite simple mathematical reasoning that would shed light on what he is writing abou, like the way reasonances act to clear spaces within the Saturnain ring system. It seems he doesn't want to put the general readership off by including any math .... and then he introduces mathematical terms, such secular terms, that don't mean anything to someone who doesn't have some math background.

    ReplyDelete
    Replies
    1. Thanks for your comment - I have a lot of time for Ian Stewart, but as you say, for me this one just didn't live up to the promise.

      Delete

Post a Comment

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Make, Think, Imagine - John Browne ***

When you read a politician's memoirs you know that, nine times out of ten, it won't really quite work, because the message can't carry a whole book. It's reminiscent of the old literary agent's cry of 'Is it a book, or is it an article?' It's not that there aren't a lot of words in such tomes. It's almost obligatory for these books to be quite chunky. But it's a fair amount of work getting through them, and you don't feel entirely satisfied afterwards. Unfortunately, that's rather how John Browne (former head of oil giant BP)'s book comes across.

It's not that the central thread is unimportant. It used to be the case, certainly in the UK, that science, with its roots in philosophy and the pursuit of knowledge, was considered far loftier than engineering, growing out of mechanical work and the pursuit of profit. There is, perhaps, still a whiff of this around in some circles - so Browne's message that engineering has been…

Bloom - Ruth Kassinger ***

There is much fascinating material in this chunky book by Ruth Kassinger. It may be my total ignorance of biology and everyone else knows these things, but I learnt so much - for example that seaweed is algae and not a plant, about algae's role in the development of land plants, about the algae in lichen and its contribution to coral reefs.

The book is divided into four broad sections: on the origins and development of algae, on algae (and particularly seaweed) as food, on making use of algae, for example, for biofuel, and on algae and climate change, particularly the bleaching of coral and algal blooms. This is all done in a very approachable writing style, mixing descriptive material that is never over-technical with narrative often featuring visits to different locations and to talk to a range of experts from those who study to algae to those who cook them.

There are two problems though. Firstly, the book is too long at 380 pages. Each section could do with a trim, but this wa…