Skip to main content

Who Cares About Particle Physics? - Pauline Gagnon ****

This could be a very short book, consisting only of the words 'I do' - but a more realistic title would be 'What has the Large Hadron Collider (LHC) ever done for us?' Pauline Gagnon takes us on a tour of the standard model of particle physics, introduces the clumsily-titled Brout-Englert-Higgs field (most of us give in and accept it is more practically called the Higgs field, while recognising the other contributors), investigates the role of particle accelerators and takes us through the success with the Higgs boson, and the less successful search for dark matter and supersymmetrical particles.

The later part of the book is a bit of hotchpotch of the author's pet topics (or at least I'm guessing this, as they don't really flow from the first six or seven chapters) on the likes of a rather meandering collection of what research does for us from cancer cures to nuclear fusion (eventually), an examination of the management model used at CERN, a discussion of the (lack of) diversity in physics and bizarrely the role of Mileva Maric in Einstein's work, before reverting to topic of the book with a final chapter looking at possible future discoveries at CERN.

What makes this book worth celebrating for me is getting a really good feel for what the scientists working at the LHC actually do, how they interpret those messy-looking blasts of data, how so many scientists can work together (perhaps ascribing rather more efficiency to the process than is strictly accurate) and why this kind of research is valuable. This kept me interested and wanting to discover more.

I am giving this book four stars for its interesting insider content and particularly its insight into the way that the LHC is used that I have never seen elsewhere. But it does have some issues. Gagnon's attempt to speak down to the general reader sometimes feels a little condescending, not least in the decision to use stuffed toys to represent fundamental particles - it feels like she's trying too hard. There's also a classic 'expert's issue' in explaining why the particle discovered was thought to be a Higgs boson. She explains how the standard model was flawed and patched up with the idea of the Higgs etc. field. This implied there should be Higgs bosons, but they didn't know the mass. So how do they know that the new particle is a Higgs boson, rather than just something else that was missing from the standard model? There is no convincing answer given for this.

The writing style was also a little too much like being lectured - a barrage of facts, lacking much in the way of narrative structure. And an oddly obvious error had crept in: a table showing the behaviour of dark matter claimed it was not influenced by gravity, which is rather odd since this is the only way it can be detected. Oh, and the author falls into the error of trying to justify the expenditure on CERN because it gave us the web - a particularly lame argument.

However, these negatives are more than overcome by the content in the sense that we get far more than the typical basic tour and explanation of the LHC - this is really insightful material on how the LHC experiments are used and how they might be extended in the search for dark matter and the (increasingly unlikely) supersymmetric particles. Because of this, it's a book that's well worth reading if you have interest in this most fundamental of physical explorations.


Using these links earns us commission at no cost to you
Review by Brian Clegg


Popular posts from this blog

Patricia Fara - Four Way Interview

Patricia Fara lectures in the history of science at Cambridge University, where she is a Fellow of Clare College. She was the President of the British Society for the History of Science (2016-18) and her prize-winning book, Science: A Four Thousand Year History (OUP, 2009), has been translated into nine languages. An experienced public lecturer, Patricia Fara appears regularly in TV documentaries and radio programmes. She also contributes articles and reviews to many popular magazines and journals, including History Today, BBC History, New Scientist, Nature and the Times Literary SupplementHer new book is Erasmus Darwin.

Why history of science?
I read physics at university, but half-way through the course I realised that had been a big mistake. Although I relished the intellectual challenge, I was bored by the long hours spent lining up recalcitrant instruments in dusty laboratories. Why was nobody encouraging us to think about the big questions – What is gravity? Does quantum mechani…

The Idea of the Brain: Matthew Cobb *****

Matthew Cobb is one of those people that you can’t help but admire but also secretly hate just a little bit for being so awesome. He is professor for zoology at the University of Manchester with a sizable teaching load that he apparently masters with consummate skill. He’s a scientific researcher, who researches the sense of smell of fruit fly maggots; I kid you not!  He’s also an attentive and loving family father but he still finds time and energy to write brilliant history of science books, three to date. His first, The Egg and Sperm Race, describes the search for the secret of human reproduction in the seventeenth and eighteenth centuries and is one of my favourite history of science books, on the period. His second, Life’s Greatest Secret is a monster, both in scope and detail, description of the hunt to decipher the structure and function of DNA that along the way demolishes a whole boatload of modern history of science myths. The most recent, and the subject of this review, is

The Big Ideas in Science - Jon Evans ***

The starting point of a review like this has to be to congratulate the author on his achievement, Jon Evans, because getting all of science into one relatively short book is a massive (and thankless) task. Although inevitably the result is a fairly hectic dash through the material, with limited space for subtleness, Evans manages to make the experience readable and has a light touch that is effective without becoming too simplistic.

There is only one reason this book doesn't get four stars - it's not the quality of the writing but rather the selection of the contents. Of course, there is bound to be plenty of stuff missed out - how else could you get all of science into 269 pages? But the balance is strangely skewed. Chemistry is pretty much omitted, though aspects of chemistry occur under other headings. But for me, the real problem is that physics is really under-represented. It's interesting to use Jim Al-Khalili's recent excellent physics summary title The World Acc…