Skip to main content

A World From Dust - Ben McFarland ***

This is, without doubt, one of the strangest popular science books I've ever read. A quote in the blurb says 'this book is very approachable for people with a minimal background in chemistry,' though given the author of this remark is a professor of geobiology, it's tempting to wonder how he knows what would be approachable to such a person. 

Where he's definitely right, though, is when he says 'in ways that have not been attempted by earlier writers on the topic.' I have never before read a science book quite like this. The reason is that you will generally read about physics the way a physicist would look at it, or about biology as understood by a biologist. This reframes all the science it uses as seen by a chemist. The result is novel, certainly, though I'm not convinced it makes the subjects more approachable - instead, for me, it obscures the message.

In Ben McFarland's obsessive attempt to represent any science from a chemistry viewpoint, what he writes can sometimes be confusing. At times, it even sounds worryingly like the way pseudoscience uses scientific terminology e.g. 'Energy rate density (ERD) is the ratio of watts to kilograms. As such, the ERD for a system measures the river of energy that is spread out as it flows through a system. If the river flows more quickly and more energy is processed, then the ERD increases, too.' 

Having said all that, there is some interesting material in the book. McFarland challenges the great biologist and science communicator Steven J. Gould, who suggested that if you rewound the 'tape of life' and played it again, things would have turned out to be very different. According to McFarland, everything is so limited by chemistry, that the new history of life would seem extremely familiar. That's fair enough, though I think McFarland exaggerates Gould's point to be able to challenge it, which he does repeatedly. I don't think Gould was really suggesting that another run of the development of life would produced silicon-based lifeforms using arsenic where we would use phosphorus. Rather, Gould was suggesting that within a very basic related framework, many of the outcomes were dictated by chance in a hugely complex (and indeed chaotic) system, meaning that the results would be likely to be significantly different to lifeforms we see today.

However, if you overlook McFarland's obsession with proving Gould wrong, his exploration of how very few elements could play the part they do in living creatures is genuinely absorbing, especially where he demonstrates the importance of size, charge and bond strengths as determiners of the possible outcomes. Much of the book focuses on how life might have developed, seen from his unique chemist's viewpoint. This isn't the best book to get a feel for the nature of biological life and the complexity that is involved - a far better read on that subject is Nick Lane's The Vital Question. Yet it's impossible to deny that McFarland's unique way of looking at things gives new insights to the reader on the topic established in the subtitle: how the periodic table shaped life.

I personally found the approach and style irritating (and struggled with most of the fuzzy illustrations). But the book may well work for other readers, especially if they have a chemistry background. And this is a a true, brave attempt to be different in approach to popular science writing, which must be applauded.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg


Comments

Popular posts from this blog

Patricia Fara - Four Way Interview

Patricia Fara lectures in the history of science at Cambridge University, where she is a Fellow of Clare College. She was the President of the British Society for the History of Science (2016-18) and her prize-winning book, Science: A Four Thousand Year History (OUP, 2009), has been translated into nine languages. An experienced public lecturer, Patricia Fara appears regularly in TV documentaries and radio programmes. She also contributes articles and reviews to many popular magazines and journals, including History Today, BBC History, New Scientist, Nature and the Times Literary SupplementHer new book is Erasmus Darwin.

Why history of science?
I read physics at university, but half-way through the course I realised that had been a big mistake. Although I relished the intellectual challenge, I was bored by the long hours spent lining up recalcitrant instruments in dusty laboratories. Why was nobody encouraging us to think about the big questions – What is gravity? Does quantum mechani…

The Idea of the Brain: Matthew Cobb *****

Matthew Cobb is one of those people that you can’t help but admire but also secretly hate just a little bit for being so awesome. He is professor for zoology at the University of Manchester with a sizable teaching load that he apparently masters with consummate skill. He’s a scientific researcher, who researches the sense of smell of fruit fly maggots; I kid you not!  He’s also an attentive and loving family father but he still finds time and energy to write brilliant history of science books, three to date. His first, The Egg and Sperm Race, describes the search for the secret of human reproduction in the seventeenth and eighteenth centuries and is one of my favourite history of science books, on the period. His second, Life’s Greatest Secret is a monster, both in scope and detail, description of the hunt to decipher the structure and function of DNA that along the way demolishes a whole boatload of modern history of science myths. The most recent, and the subject of this review, is

The Big Ideas in Science - Jon Evans ***

The starting point of a review like this has to be to congratulate the author on his achievement, Jon Evans, because getting all of science into one relatively short book is a massive (and thankless) task. Although inevitably the result is a fairly hectic dash through the material, with limited space for subtleness, Evans manages to make the experience readable and has a light touch that is effective without becoming too simplistic.

There is only one reason this book doesn't get four stars - it's not the quality of the writing but rather the selection of the contents. Of course, there is bound to be plenty of stuff missed out - how else could you get all of science into 269 pages? But the balance is strangely skewed. Chemistry is pretty much omitted, though aspects of chemistry occur under other headings. But for me, the real problem is that physics is really under-represented. It's interesting to use Jim Al-Khalili's recent excellent physics summary title The World Acc…