Skip to main content

Measures of Genius - Alan Durden ***

There are broadly three ways to write a popular science book. The author can focus on one particular area of science, on the life and work of a key scientist, or use some linking mechanism to pull together a range of topics. This last approach can be very successful, and is tempting to authors and loved by publishers, which implies that they sell well - but it is the most difficult approach to take.

To compare the good and bad sides of such 'linked topic' books, it's only necessary to take a look at titles covering the periodic table. The less successful ones just work through the elements, or a subset of them, in some kind of pattern based on the table itself. But that results in a very mechanical approach, little more than textbook lite. The alternative, typified by The Disappearing Spoon, is to use the broad theme of the chemical elements, but to let the narrative structure carry the reader through, resulting in a far more successful presentation.

Measures of Genius is a linked topic book, pulling together short scientific biographies of historical figures with scientific units named after them. Following an introductory chapter on the nature and development of measurement, we get 14 chapters each on a scientist (in the case of Fahrenheit and Celsius, two for the price of one) who inspired a unit, from very familiar names like Isaac Newton and James Watt to those whose units are better known than the individuals, typified by Ohm, Ampere and Coulomb. However, Alan Durden does not limit himself to the specific scientist's work, where necessary pulling in other names. So, for instance, in Ampere's chapter, Young, Huygens, Arago, Fresnel and Oersted all pop up.

Although the book has a linking theme, it's an arbitrary one, as the selection of scientists to provide unit names has sometimes been decidedly odd. My biggest concern was why we should care about this group of individuals. Durden provides us with plenty of facts about their lives and work, but doesn't build much of a narrative. When covering the well-known figures, the content was solid without adding a lot to the many other scientific biographies on these subjects, staying safely at the uncontroversial end of the spectrum. So, for instance, Newton's sexuality was skirted around, and though his interests in alchemy and biblical research were mentioned, there was little opportunity to understand why they were so important to him. Similarly, Tesla's chapter gives no feel for the fascinating conflict between his genius at electrical engineering and his sometimes shaky grasp of physics, leading to his dismissal of relativity and misapprehension about the nature of electromagnetic radiation.

It was great, however, to find out more about the lesser-known figures. These were inevitably more interesting because there has been so little written about them, though in most case it seems that one of the reasons that they don't feature more widely is that they were rather dull people. There are plenty of facts here, and I think the book would be extremely useful as a way to get some background on the contributions these individuals made to science and technology, but I would have liked a little more flair along the way.


Paperback 
Review by Brian Clegg

Comments

Popular posts from this blog

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …

The Case Against Reality - Donald Hoffman ***

It's not exactly news that our perception of the world around us can be a misleading confection of the brain, rather than a precise picture of reality - everything from optical illusions to the apparent motion of video confirms this - but professor of cognitive science Donald Hoffman goes far beyond this. He wants us to believe that spacetime and the objects in it are not real: that they only exist when we perceive them. It's not that he believes everything to be totally illusory, but suggests that the whole framework of the physical world is a construction of our minds.

To ease us into this viewpoint, Hoffman gives the example of the Necker cube - the clever two-dimensional drawing apparently of a cube which can be seen in two totally different orientations. Calling these orientations 'Cube A and Cube B' he remarks that our changing perceptions suggest that 'neither Cube A nor Cube B is there when no one looks, and there is no objective cube that exists unobserve…

The Body - Bill Bryson ****

I am a huge fan of Bill Bryson's travel books - he is a superb storyteller, and in the best parts of his science writing, this ability to provide fascinating facts and intriguing tales shines through.

After taking on the whole of science in his first book, here he focuses in on the physiology, anatomy and diseases of the human body. Bryson does so with his usual light, approachable style, peppering the plethora of facts (and 'don't know's - it's amazing how much we still don't know about the workings of the body) with the little nuggets you can't help but share and stories of some of the odd and, frankly, horrifying goings on in the history of medicine.

So, for example, Bryson throws in 'The chin is unique to humans and no one knows why we have one.' He speculates that it might be just that we 'find a good chin dashing' and quotes a Harvard professor as saying 'Testing this last hypothesis is especially difficult, but the reader is encoura…