Skip to main content

Black Holes: a very short introduction - Katherine Blundell ***

Black holes have to be amongst the most fascinating phenomena of astronomy/cosmology and as such make a perfect topic for a new addition to OUP's vast collection of pocket guides, the 'very short introduction' books. I read my copy on a couple of 45 minute train journeys - it's long enough to give a good grounding in the basics of black holes, without being heavy or over-technical.

We are taken on a tour that includes the early black hole-like concepts, and the nature of the real thing, what would happen if you fell into one, the black hole's thermodynamics (which is more interesting than it sounds), how we discover things like their mass and spin rate, how they grow (and shrink) and plenty more. Considering this is just 93 pages, Katherine Blundell packs in the good stuff.

The writing style is generally approachable, and this is a popular topic, so I was all set to give the book four stars, but there were sufficient issues to pull it back down. The first was the errors. Almost every popular science book has at least one, but there seemed rather more than usual. The expected one, which I couldn't blame Blundell for, was in the description of Hawking radiation, which doesn't make a lot of sense. The reason I don't blame the author is that almost all popular science descriptions of Hawking radiation don't make sense, because all of us, except working physicists, assumed Hawking described it correctly in his book. Unfortunately he didn't - in attempting to simplify a messy theoretical concept, he came up with an 'explanation' that doesn't hold water, which was then, unsurprisingly, repeated elsewhere over an over. It's unfortunate timing that there has been a lot of publicity this year for this problem. 

Less forgivable were a couple of oddities. The Andromeda galaxy is described as being 6 million light years away. It is actually around 2.5 million light years. While you might argue this is order of magnitude correct, even the worst taxi driver wouldn't take you on a route that was 3.5 million light years too far. We are also told that white dwarf stars are cold. This seems to suggest a lack of understanding of stars - you can't radiate blue-white light and be cold. What might have been intended is that over time white dwarfs do cool in the way that ordinary stars don't, because there's no hydrogen fusion to heat them, but it's a very slow process and observable white dwarfs tend to be pretty toasty.

Finally, there's the matter of omissions. Most of the work on black holes is theory rather than observation, and there's a rich vein in the theory around, for instance, the concept of firewalls - whether an observer passing into a black hole would not notice the event horizon or would burn up, as some theories suggest. Other theories put the entire universe in a black hole, making the possibility of a holographic reality. It's a shame this fun speculation isn't there, both to see and be analysed, especially as so much about black holes is based on theory rather than observed data.

Not a bad book, by any means, but enough issues to raise a small flag.


Paperback 

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Rockets and Rayguns - Andrew May ****

The Cold War period saw dramatic developments in science and technology, coinciding with the flourishing of the science fiction genre. In Rockets and Rayguns, Andrew May draws on the parallels between reality and fiction, each influencing the other.

Inevitably a major Cold War theme was the threat of nuclear war, and May opens with the bomb. It's fascinating that fiction got there first - nuclear weapons were featured in science fiction when many physicists were still doubting the practicality of using nuclear energy. Of course, it's a lot easier to simply take a concept and dream up a weapon than it is to make it for real - for example, H. G. Wells' prophetic nuclear bombs from his 1914 The World Set Free were nothing like the real thing. And some science fiction devices concepts - notably ray guns and force fields - came to very little in reality. However this doesn't prevent the parallels being of interest.

May gives us a mix of the science - describing how nuclear we…

Galileo Galilei, the Tuscan Artist – Pietro Greco ****

Near the beginning of John Milton’s epic poem Paradise Lost, he refers to a ‘Tuscan artist’ viewing the Moon through an optic glass. He’s talking about Galileo – one of history’s greatest scientists, but not the most obvious person to slap an ‘artist’ label on. Yet Galileo lived at a time – the Renaissance – when it was fashionable to dabble impartially in both the arts and sciences. Look up ‘Renaissance man’ on Wikipedia and you’ll see Galileo’s picture right there underneath Leonardo da Vinci’s. It’s a less well-known side to his life, but it crops up again and again – interspersed among his many scientific achievements – in this excellent new biography by Pietro Greco.

If you’re looking for interesting trivia, you’ll find plenty in this book. Galileo’s father was a musician with scientific leanings, who carried out some of the first experiments on musical acoustics – which Galileo may have assisted with. As a young professor of mathematics, Galileo delivered a couple of lectures on …

Enjoy Our Universe - Alvaro de Rújula ***

I’m going to start this review with a longish quote from the author’s preface, for several reasons. It explains De Rújula’s purpose in writing the book, as well as the audience he’s trying to reach, while giving a taste of his idiosyncratic writing style (which he keeps up throughout the book). It’s also a good starting point for discussing the book’s strengths and weaknesses. Here’s the quote:

'This book is not intended for (very) young kids nor for physicists. It is intended for anyone – independently of the education (s)he suffered – who is interested in our basic current scientific understanding of the universe. By "universe" I mean everything observable from the largest object, the universe itself, to the smallest ones, the elementary particles that "function" as if they had no smaller parts. This is one more of many books on the subject. Why write yet another one? Because the attempts to understand our universe are indeed fun and I cannot resist the tempta…